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Abstract 
Chronic Obstructive Pulmonary Disease (COPD) is among the major global concerns of mortality and morbidity, 
affecting millions of people worldwide. It is a progressive pulmonary disease including symptoms like chest tightness, 
wheezing, coughing, and shortness of breath. COPD is a multifactorial respiratory condition influenced by various risk 
factors. These risk factors include tobacco smoking, environmental air pollution, occupational exposures, 
occupational exposures, genetic factors, and other comorbidities. Another factor that appears to play important role 
in the development and recurrence of COPD is lung microbiota dysbiosis. This dysbiosis is believed to contribute to 
chronic inflammation, impaired host defense mechanisms, increased mucus production, and treatment response in 
COPD patients. To delve deeper, the research in the field is oriented toward understanding the association between 
COPD and microbial Dysbiosis.  The biomarkers associated with the microbiome are being used for diagnosis of the 
disease. This study brings forth to readers the application of Machine learning (ML) and Deep learning (DL) tools in 
the detection of the disease by extracting meaningful information from clinically relevant COPD data generated by 
various diagnostic techniques such as CT scans, spirometry, acute exacerbations, and several other COPD risk factors. 
Although ML and DL techniques have been applied extensively in the literature for the prediction of COPD 
readmission, microbial dysbiosis data has not been used for this prediction. The focus of this study is to highlight the 
latest research related to microbial dysbiosis in COPD and explore the possibility of applying AI tools for novel 
diagnostics and therapeutic strategies.  
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Introduction 
Chronic Obstructive Pulmonary Disease (COPD) 

refers to a progressive lung disease characterized 

by a group of different disorders that obstruct 

airways and possess difficulties in breathing. 

Persistent bronchitis and emphysema are the two 

common disorders of COPD including wheezing, 

chest tightness, coughing, shortness of breath, and 

other respiratory symptoms. Chronic bronchitis 

involves irritation and inflammation of the 

bronchial tubes leading to increased mucus 

production and coughing. Emphysema, on the 

other hand, involves the enlargement of the lungs' 

air sacs due to the deterioration of their walls 

resulting in reduced lung elasticity and impaired 

gas exchange (1, 2). WHO reports COPD among 

the top 10 global causes of morbidity and 

mortality having a substantial negative impact on 

people's quality of life, healthcare systems, and 

society (3). Globally, ~384 million individuals are 

estimated to live with COPD, and the numbers 

continue to rise. Approximately 3 million fatalities 

are attributed to COPD each year, making it the 

third most prevalent cause of mortality, after 

stroke and ischemic heart disease. Furthermore, it 

is projected that COPD will become a preeminent 

cause of disability worldwide by 2030. Regional 

variations in COPD prevalence and mortality rates 

exist, with higher rates observed in low- and 

middle-income countries. However, developed 

nations also bear a significant burden of COPD 

due to the high prevalence of smoking and 

exposure to other risk factors. In the United States 

alone, it is estimated that over 16 million adults 

have been diagnosed with COPD, and millions 

more are undiagnosed or in the early stages of the 

disease. COPD not only affects a person's health 

but has economic implications as well; since 

direct and indirect costs associated with COPD 

management and treatment are substantial. 

According to the American Lung Association,  
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COPD is estimated to cost the United States 

economy over $50 billion annually in healthcare 

expenditures and productivity losses (2, 4). In 

India, COPD ranks second in terms of death with 

distinct prevalence rates in different parts of 

Indian states and regions (5). The recent data 

from a few Indian states including West Bengal, 

Delhi, Tamil Nadu and the Urban area of 

Hyderabad shows 24.06 %, 10.10 %, 9 % and 11 

% prevalence of COPD respectively (6–8). In 2021, 

Ashwani et al., conducted a systematic review and 

meta-analysis of 23 studies with a total of 80,138 

participants from 2000 to 2020 reporting the 

average prevalence of COPD in India to be 7.0 % 

(9). Another study performed by 8,569 

individuals also found a similar prevalence rate of 

7.4 % and recorded that males have a higher 

burden of the disease (10). Although the 

prevalence found in this study was lower than the 

global prevalence ranging from 10.7 % to 12.1 %, 

various research indicates that a significant 

proportion, ranging from 50 % to 90 %, of 

individuals with COPD are not diagnosed due to 

the limited availability or accessibility of 

spirometers or trained healthcare providers 

capable of identifying the condition. A cross-

sectional community survey conducted with 5420 

individuals from Pune, an Indian state, shows only 

0.9 % (49/5420) people were aware of the term 

“COPD” and hence reveal the incredibly low level 

of COPD awareness in the Indian populace (11). 

This emphasizes the necessity for widespread 

mass awareness campaigns across the country. 

Actually, COPD is a multifactorial respiratory 

condition influenced by various risk factors. 

Understanding the percentage data associated 

with these risk factors is essential for effective 

prevention and management strategies. These 

risk factors include tobacco smoking, 

environmental air pollution, occupational 

exposures, genetic factors and other 

comorbidities (Figure 1). Tobacco smoking is 

widely recognized as the primary risk factor for 

COPD, contributing to a significant percentage of 

cases globally. Numerous studies have 

consistently shown a strong association between 

smoking and COPD development. According to 

WHO, approximately 70 % of COPD cases are 

attributed to Tobacco smoking in developing 

countries whereas it accounts for 30-40 % of 

COPD cases in low- and middle-income countries 

(12). Environmental air pollution, including 

indoor and outdoor pollutants, is another 

significant risk factor for COPD. The percentage 

data associated with air pollution can vary 

depending on geographical location and 

population density. Approximately 25 % of COPD 

cases worldwide are attributed to ambient air 

pollution (13). Additionally, exposure to indoor 

air pollution from biomass fuels has been found to 

contribute to approximately 19 % of COPD cases 

in low-income countries (14).  
 

 
Figure 1: Percentage Distribution of Various Risk Factors Associated with COPD 
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The diagnostic criteria for COPD involve the 

presence of symptoms, obstructive airflow 

limitation, and a documented history of exposure 

to a known risk factor. If a patient is 

asymptomatic and/or lacks physiological signs of 

the disease, COPD cannot be diagnosed, 

presenting an inherent drawback that may lead to 

misdiagnosis. Assessing symptoms is challenging 

due to subjectivity in the patient's perception, and 

initial symptoms can overlap with other common 

illnesses, becoming significant only in later stages 

(15, 16). A multidimensional scoring BODE index 

comprising of Body-Mass Index (BMI), 

Obstruction, Dyspnoea, and Exercise Capacity is 

used to predict mortality in patients diagnosed 

with COPD  (17). Spirometers, or Pulmonary 

Function Tests, are other common diagnostic 

techniques for assessing lung capacities in COPD 

patients. However, even with the inclusion of new 

criteria for determining at-risk patients for 

readmission like the Hospital Readmissions 

Reduction Penalty, the readmission rate has not 

decreased. It stays clinically challenging to 

identify patients at high risk and to prescribe a 

specific therapeutic regimen tailored to their 

needs. Therefore, this calls for a need to develop 

new tools for the prediction of COPD outcomes 

(18), where ML tools can play a pivotal role in 

selecting essential features for early COPD 

diagnosis. Machine learning techniques have been 

increasingly employed in the diagnosis of COPD. 

These tools leverage diverse data sources, 

including clinical records, imaging data, and 

patient history, to identify patterns and features 

indicative of COPD. One key advantage of machine 

learning in COPD diagnosis lies in its ability to 

handle complex and multifactorial data, allowing 

for the identification of subtle patterns that may 

be challenging for traditional diagnostic tools. 

Moreover, machine learning models can 

continuously adapt and learn from new data, 

enhancing their diagnostic capabilities over time. 

This dynamic and data-driven approach contrasts 

with the static nature of traditional diagnostic 

criteria, providing a more personalized and 

accurate diagnosis for individual patients. 

Integration of machine learning tools in COPD 

diagnosis offers a promising avenue for 

overcoming the limitations of traditional 

diagnostic methods. By leveraging advanced 

algorithms and diverse data sources, machine 

learning enhances the accuracy and efficiency of 

COPD diagnosis, ultimately improving patient 

outcomes. 

Microbial Dysbiosis in COPD 
Microbial dysbiosis refers to a disturbance in the 

composition and functionality of the microbial 

communities that reside within the respiratory 

and gastrointestinal tracts. The lungs and gut 

harbour a diverse array of microorganisms, 

including bacteria, viruses, fungi, and archaea. 

These communities form complex ecological 

networks and play essential roles in maintaining 

health and modulating immune responses (19). In 

the context of COPD, microbial dysbiosis mainly 

refers to an alteration in the lung microbiome, 

characterized by changes in the relative 

abundance and diversity of microbial species. 

Although it was always thought that the lungs 

were sterile, recent studies employing cutting-

edge molecular techniques have shown that 

healthy humans have a rich population of 

bacteria, viruses, fungus, and other microbes 

living in their lungs (20, 21). However, the 

dysbiosis of gut (22) and oral (23) is also seen in 

people with COPD and may play a role in the 

emergence and aggravation of the condition due 

to increased abundance of potentially pathogenic 

bacteria, decreased microbial diversity, shifts in 

microbial composition and impact on 

inflammation and immune response.  

Lung Microbial Dysbiosis and COPD 
In COPD, the lung microbiome undergoes 

dysbiosis, characterized by changes in the types 

and relative abundance of microorganisms. This 

dysbiosis is influenced by various factors such as 

chronic inflammation, exposure to environmental 

pollutants (such as cigarette smoke), and 

respiratory infections. The dysbiosis observed in 

COPD has been linked to several detrimental 

effects. It can trigger abnormal immune responses 

and chronic inflammation in the airways, 

contributing to lung tissue damage and 

progressive airflow limitation. Dysbiosis may also 

impair the host's ability to effectively defend 

against respiratory infections, leading to 

recurrent exacerbations. Furthermore, dysbiosis 

can affect mucus production and clearance 

mechanisms in the airways, leading to increased 

mucus production, impaired clearance, and 

airway obstruction. These changes can further 

exacerbate symptoms and contribute to disease 
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progression in COPD (20). The human lungs have 

a high concentration of oxygen which allows a 

number of aerobic microbes to colonize it 

including several bacteria, fungi and even viruses 

(20,24). The lungs, which are typically considered 

free of any normal bacteria, are actually now 

known to contain a diverse and sparse population 

of microorganisms. These microorganisms, 

known as the lung microbiota, have been found to 

potentially play a role in maintaining the immune 

balance within the lungs and influencing the 

body's response to pathogens (25). According to a 

study the low density of the lung microbiota 

estimated to be around 103–105 colony-forming 

units per gram of lung tissue in mice, and ~ 2.2 

×103 cells per square centimetre of lung in 

humans, may contribute to good health and well-

being (26). The specific composition of the lung 

microbiota is influenced by various factors such 

as the immigration and elimination of bacteria, as 

well as the local conditions that support their 

growth. The most commonly observed bacterial 

phyla in the lungs include Firmicutes, 

Bacteroidetes, Proteobacteria, and Actinobacteria. 

Compared to bacteria, fungi and viruses are less 

likely to colonise the lungs, but they can still exist 

in isolated amounts. Lung tissue has been found 

to include fungi including Penicillium Candida, 

Aspergillus, Eurotium, Cryptococcus, Cladosporium 

and Malassezia. (20, 21, 26).  Evidence from 

various research shows the cruciality of lung 

microbiota in the onset and advancements of 

COPD. The lung microbial dysbiosis is 

characterized by reduction in the normal 

microbiota and development of pathogenic 

microorganisms. Majorly, an expansion of 

pathogenic organisms including Haemophilus, 

Corynebacterium, Leptolyngbya, Capnocytophaga, 

Curvibacter, Afipia, Moraxella, Neisseria, and 

Undibacterium were observed in case of COPD 

(27). The examination of microbiomes from 

different samples of COPD patients gives better 

understanding of lung microbial dysbiosis (28). 

The observations of lung tissues samples shows 

the abundance of Firmicutes, Burkholderia genus, 

Lactobacillus (29), Flavobacterium spp., 

Prevotella  spp., Haemophilus influenzae, 

Porphyromona, Bacteroidales, Dialister, 

Elizabethkingia meningoseptica (30), Neisseria, 

Corynebacterium, Staphylococcus, Rothia, 

Alloiococcus and Veillonella (31). The increase in 

the abundance of these pathogenic bacteria was 

directly found to be associated with the 

pathogenesis, progression and exacerbation of 

COPD (32, 33).  

Gut Microbial Dysbiosis and COPD 
Apart from the respiratory microbiota, the gut 

microbiota also plays a vital role in COPD 

pathogenesis. The gut-lung axis, a bidirectional 

communication system between the gut and 

lungs, influences various aspects of immune 

regulation and inflammation. Studies have shown 

that COPD patients have an altered gut microbial 

composition, marked by alterations in the number 

of particular bacterial taxa and a decrease in 

diversity. These alterations are associated with 

systemic inflammation and impaired immune 

responses (24, 27, 28).  

Lung-Gut Axis in COPD 
Gut-lung axis refers to the communication that 

occurs between bacteria in the gut and lung (27). 

The onset and course of COPD are significantly 

influenced by the lung-gut axis. The interactions 

between the lungs and the gut have implications 

for the immune response, inflammation, and 

microbial composition, all of which contribute to 

COPD pathogenesis. The lung-gut axis involves 

bidirectional communication between the 

immune systems of the lungs and the gut. The gut, 

being a major site of immune activity and 

harboring a diverse microbial community, can 

contribute to systemic inflammation through the 

lung-gut axis. Both the lung and gut microbiota 

play crucial roles in immune regulation and 

overall health. The disturbance of gut-lung 

microbiota were found to be linked with various 

respiratory and gut diseases such as cystic 

fibrosis, asthma, ulcerative colitis, COPD, and 

Crohn's disease (34). The various factors 

associated with gut-lung microbial dysbiosis 

include tobacco smoking exposures, malnutrition, 

antibiotics and steroid treatments (27,35). A 

study of 15 patients with acute exacerbation of 

COPD, revealed the dynamic change in the gut-

lung microorganisms during disease where 

antibiotic and steroid treatments were found to 

differentially affect the gut-lung microbiota, 

ultimately helping in the progression of the 

disease (35). The major abundance of 

microorganisms in the gut of healthy and COPD 

individuals were listed in Table 1. Understanding 

the association between the gut and lung 
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microbiota, highlighting its potential as a 

biomarker, and maybe pointing it as a target for 

future respiratory treatments, may depend on the 

application of culture-independent techniques to 

influence the gut and lung microbiota on COPD. 

Oral Microbial Dysbiosis and COPD 
Oral microbial dysbiosis refers to an imbalance or 

disruption in the normal composition and 

diversity of microorganisms in the oral cavity. 

This dysbiosis can have implications for various 

aspects of oral and systemic health, including its 

potential role in the development and progression 

of COPD. The oral cavity harbors a complex and 

diverse microbial community, which includes 

both commensal and potentially pathogenic 

bacteria. In individuals with poor oral hygiene or 

oral health conditions such as periodontitis, the 

oral microbiota can become dysbiotic, with an 

overgrowth of pathogenic bacteria. These 

pathogenic bacteria can be aspirated into the 

lower respiratory tract, potentially contributing to 

the inflammation and infection observed in COPD. 

Dysbiotic oral microbiota and the resulting 

periodontal disease can lead to chronic 

inflammation in the oral cavity. This local 

inflammation can stimulate a systemic 

inflammatory response, which can contribute to 

the systemic inflammation observed in COPD. The 

systemic inflammation may worsen COPD 

symptoms and contribute to the progression of 

the disease. Dysbiotic oral microbiota and 

periodontal disease can influence the composition 

and diversity of the lung microbiota (23, 36). 

Aspiration of oral pathogens can introduce these 

microorganisms into the lungs, potentially 

altering the lung microbial community. Changes in 

the lung microbiota have been associated with 

increased inflammation and exacerbations in 

COPD. COPD and oral health conditions, such as 

periodontitis, share common risk factors such as 

smoking, poor nutrition, and systemic 

inflammation. These shared risk factors may 

contribute to both oral microbial dysbiosis and 

the onset or progression of COPD. Recognizing the 

association between oral microbial dysbiosis and 

COPD highlights the importance of oral health in 

the management of COPD (37, 38). The 

distribution of microorganisms in the oral cavity 

of healthy and COPD individuals are listed in 

Table 1.  
 

Table 1: Site specific Micro Biome Abundant in Healthy Versus COPD Individuals  

Organ Normal Micro biome Micro biome in COPD References 

Lung Staphylococcus 

epidermidis,  Corynebacterium spp. 

(diphtheroids), Propionibacterium spp., 

Haemophilus spp, Fusobacterium, 

Staphylococcus aureus, Moraxella, 

Veillonella, Eikenella, Streptococcus 

Prevotella,  and Pseudomonas   

Fungi: 

Saccharomyces cerevisiae, Malassezia 

restricta, and Candida albicans 

Streptococcus, Moraxella, 

Proteobacteria, H. infuenzae and 

Pseudomonas  

(24), (26), (28), 

(29), (31) 

Gut Firmicutes, Bacteroides distasonis, 

Bacteroides uniformis, Fusobacteria, 

Actinobacteria, Proteobacteria, 

Verrucomicrobia,  Enterococcus 

casseliflavus, E. avium, Eubacterium 

ramulus, Clostridium coccides, C. 

orbiscinden, Bifidobacterium infantis, B. 

longum,  L. plantarum, L. casei, L. 

acidophilus, L. gasseri Butyrivibrio species, 

Peptostreptococcus and E. coli,  

Firmicutes, Desulfovibrionales, 

family Victivallaceae, 

Marvinbryantia,  Enterobacteria, 

C. perfringens, C. difficile, 

Neisseria, Haemophilus, 

Moraxella, Peptococcaceae, 

family, Bifidobacterium, and 

Lactobacillus.  

(22), (24), (27), 

(28), (30) 

 

 

Oral 
Saccharibacteria, Actinobacteria, Fusobacterium, Veillonella, (23), (37), (38) 
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Gracilibacteria, Proteobacteria, 

Bacteroidetes, Chlamydiae, Chloroflexi, 

Spirochaetes, Synergistetes, 

Saccharibacteria, and Fusobacteria.  

 

Rothia, Actinomyces, 

Campylobacter, Johnsonella, 

Catonella, Porphyromonas canis, 

P. intermedia, Johnsonella ignava 

and Catonella morbi 

 

 

 

Machine Learning and COPD  
In recent years, various tools have been applied 

for the diagnosis, continuous management, 

readmission, acute respiratory failure, and 

mortality in COPD patients. Some studies are done 

on extensive population size, but others lack 

validation due to small cohorts. Nevertheless, 

many attempts have been made to predict various 

outcomes related to this disease. For the diagnosis 

of COPD patients, respiratory audio data was used 

in 126 patients for healthy participants and 

participants with COPD. Using Convolutional 

Neural Networks (CNN), they were able to 

distinguish healthy individuals from patients with 

an ROC of 0.92 (39).  While there have been many 

well-established risk factors for readmission risk, 

they have not been useful in predicting risk for 

COPD readmission (18). This calls for a need to 

develop new methods to assess risk factors for 

readmission in COPD. For detecting a 90-day risk 

of readmission rate of patients, demographics, 

vitals, lab tests, medicines, and other clinical 

factors were used as features for distinguishing 

between the two groups of 3238 patients by 

Random Forests with a Receiver Operating 

Characteristic (ROC) of 0.73 (40). To detect 

whether patients were managed according to 

WHO GOLD Standards, clinical features like 

smoking history, pre and post-bronchodilator 

FEVI scores were used. SVM-RFE provided an ROC 

Score of 0.987 in differentiating the two cohorts 

from a total of 203 patients (41). Apart from this, 

COPD patients are at high risk of respiratory 

failure, ventilator dependence, and also mortality 

after hospitalization. Records of 5061 patients of 

COPD were collected and the risk for each of these 

categories was predicted, using multiple features 

like age, gender, BMI, vitals, temperature, pulse 

and other clinical factors. Evaluation with seven 

different machine learning algorithms showed 

XGBoost for mortality detection (ROC: 0.817), 

Random Forest for acute Respiratory failure 

(ROC: 0.804) and LightGBM for Ventilator 

dependence (ROC: 0.809) (42). Table 2 

summarizes all tools that are available in the 

literature for the prediction of different outcomes 

in COPD (40, 42–48). To the best of our 

knowledge, there has been no use of ML/DL tools 

in COPD using microbial dysbiosis, even when it 

has been characterized as a major factor in COPD 

patients who are readmitted. 

 

Table 2: Summary of Tools for Prediction of Various Outcomes in COPD using ML/DL  

Predictor Article/ 

Author 

Details Features Used Technique

s Used 

Results Cohort 

Readmissio

n 

362997

99 

(40) 

The authors 

developed a 

model to predict 

90 day risk of 

readmission for 

AECOPD. 

Demographics, 

vital signs, lab 

results, 

medications, 

comorbidities 

and other 

clinical factors 

Random 

Forests 

ROC= 

0.73 

Total of 3238 

patients were 

evaluated out 

of which 1103 

were 

readmitted 

and 2142 

were not 

readmitted. 
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361779

24 (43) 

 

Prediction of 30-

day readmission 

risk in elderly 

patients with an 

exacerbation of 

COPD 

Age, education, 

smoking 

history, 

diabetes and 

other heart 

related 

comorbidities, 

no. of times of 

hospitalization 

of AECOPD, 

seasonal 

factors and 

other risk 

factors. 

Logistic 

Regression 

Accurac

y= 

85.25% 

ROC=0.8

14 

A total of 

1,120 patients 

were 

investigated, 

including 879 

non-

readmission 

patients and 

241 

readmission 

patients.  

Back 

Propagation 

Neural 

Network 

Accurac

y = 

80.65% 

ROC = 

0.775 

Support 

vector 

machines 

Accurac

y = 

88.57% 

ROC= 

0.858 

307873

51 (44) 

 

Readmission 

after 30 days for 

patients with 

COPD 

HOSPITAL 

score, LACE 

index, age, 

gender, (LOS), 

admissions in 

the previous 

year and other 

data driven 

features 

 ROC= 

0.653 

67771 

patients 

admitted for 

COPD in the 

Geisinger 

Health 

System   

Mortality 349436

32 

(42) 

 

A model was 

developed for the  

prediction of the 

mortality of 

COPD patients in 

hospital 

A combination 

of 28 clinical 

features was 

used: age, 

gender, BMI, 

SPO2 etc 

XGBoost ROC=0.8

17 

5061 patients 

from 3 

hospitals 

were selected 

out of which 

4100 were 

alive and 961 

died. 

323534

17 (45) 

 

Mortality of 

patients is 

predicted. The 

model is 

available at the 

web server at: 

https://cdnm.shi

nyapps.io/cgmor

talityapp/.  

30 features 

including 

clinical data, 

spirometry and 

imaging data 

was used 

Random 

Survival 

Forest 

C-

Index>0.

7 

2632 patients 

from 

COPDGene 

database and 

1268 

participants 

from 

ECLIPSES 

were 

included. (46) 
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15144 

(46) 

Mortality of the 

patients was 

predicted using 

CT images 

CT images + 

six-minute 

walk distance  

CNN+ 

Random 

Survival 

Forest 

3 year 

survival 

= 

0.8878  

5 year 

survival 

= 0.8411 

Data from 344 

patients was 

taken from 

Korean 

Obstructive 

Lung disease 

cohort. 102 

patients were 

chosen for 

external 

validation.  

Acute 

Respiratory 

Failure 

349436

32 

(42) 

A model was 

developed to 

predict acute 

respiratory 

failure in hospital 

Combination of 

28 clinical 

features was 

used  

Random 

Forest 

 

ROC=0.8

04 

 

5061 patients 

from 3 

hospitals 

were selected 

out of which 

4580 

experienced 

Acute 

Respiratory 

Failure and 

481 did not. 

Ventilator 

Dependence 

349436

32 (42) 

 

A model was 

developed to 

predict acute 

ventilator 

dependence in 

hospital 

Combination of 

28 clinical 

features was 

used  

LightGBM ROC=0.8

09 

5061 patients 

from 3 

hospitals 

were selected 

out of which 

3980 

experienced 

ventilator 

dependence 

and 1081 did 

not 

Continuous 

Management

  

● 331778

15 

(47) 

Differentiation of 

patients on 

whether their 

continuous 

management has 

been according 

to WHO GOLD 

standards.  

Parameters 

included 

smoking, 

mMRC score, 

forced vital 

capacity, and 

FEV1 

SVM-RFE ROC=0.9

87 

203 patients 

were 

evaluated 

with only 15 

in the 

managed 

group 

Diagnosis  ● 338170

19 

(39) 

  

Using CNN to 

detect COPD and 

its severity using 

respiratory audio 

data 

Respiratory 

audio data is 

used.  

CNN  Enhance

d ICBHI 

Score to 

93% 

The cohort is 

126 patients. 

Respiratory 

audio for 

patients 

healthy vs 

patients with 

https://www.zotero.org/google-docs/?dxTx8y
https://www.zotero.org/google-docs/?broken=Bhj35c
https://www.zotero.org/google-docs/?broken=i6wixH
https://www.zotero.org/google-docs/?broken=iewVLu
https://www.zotero.org/google-docs/?broken=HAZ9mJ


Antil et al.,                                                                                                                                                      Vol 6 ǀ Issue 2 

 

29 
 

ailments was 

chosen.  

● 220185

32 

(48) 

Using Forced 

Oscillations for 

diagnosis of 

COPD  

7 features 

using forced 

oscillation 

measurements 

of patients 

KNN, SVM, 

LBNC 

ROC= 1  50 volunteers 

such that 25 

healthy and 

25 with COPD 

were selected 

for this study. 

 

Discussion 
This review sheds light on the intricate 

relationship between COPD and microbial 

dysbiosis and pivotal role it plays in disease 

pathogenesis and progression.  Ample literature 

exists to suggest that dysbiosis of the lung, gut, 

lung-gut axis and oral cavity, contributing to 

chronic inflammation, impaired immune response 

thereby accelerating disease trajectory. The 

traditional techniques and criteria lead to the 

misdiagnosis of COPD individuals, leveraging 

machine learning tools for the diagnosis, 

continuous management, readmission, ventilator 

dependence, acute respiratory failure, and 

mortality of COPD individuals has shown 

potential. Microbial dysbiosis is a major 

contributor to COPD. Even though various ML 

Tools have been applied to predict various 

outcomes of COPD disease, to our knowledge, no 

ML/DL study has been performed that uses the 

human microbiome to predict diagnosis or 

readmission. The human gut microbiome, which 

consists of microbial communities inhabiting the 

intestinal tract, emerges as a significant factor in 

human diseases. Machine learning tools have 

shown good results in both the prediction and 

therapeutics of many diseases. Within the context 

of Colorectal Carcinoma (CRC), Thomas et al., have 

investigated the link between gut microbiome and 

CRC (49). The study could differentiate between 

CRC and healthy controls through the help of their 

gut microbiome profile using Random Forests 

with Area under the Curve (AUC) score of 0.84. In 

their study, they reported the link between the 

microbial pathways producing trimethylamine 

(TMA) from choline; the associated choline 

trimethylaminelyase gene is abundant and 

overexpressed in the gut microbiome of CRC 

patients. The variants associated with CRC mostly 

originate from H. hathewayi, C. aspargiforme, K. 

oxytoca and E. coli. This work represents a 

significant advancement in establishing the 

relationship between microbial dysbiosis and 

diseases. In another study Wang et al., conducted 

a systematic review  consolidating the research on 

microbial dysbiosis and Irritative Bowel 

Syndrome (IBS), establishing a connection 

between gut microbial dysbiosis and IBS (50). 

Individuals with IBS exhibited lower populations 

of bacterial genera such as Lactobacillus and 

Bifidobacterium, alongside higher populations of 

harmful pathogenic bacteria like 

Enterobacteriaceae and E. coli compared to 

healthy controls. ML and DL tools have also aided 

in the development of Non-invasive tools for 

multi-class diagnosis based on the faecal 

microbiome. Recently, a study has shown multi-

class classification of 9 major diseases including 

CRC and IBS, Cardiovascular diseases, Crohn’s 

disease, ulcerative colitis and Post-Acute Covid-19 

syndrome using Random Forests with AUC from 

0.9 to 0.99 in independent datasets (51).  The use 

of ML tools for the prediction of disease outcomes 

using microbial dysbiosis has been well-

established in the literature. However, the use of 

these ML/DL techniques has not been explored 

with respect to COPD. The current research on 

microbial dysbiosis associated with disease 

pathogenesis and progression allows a new 

avenue to be explored for the detection of 

diseases, especially COPD through gut 

microbiome data and machine learning models. A 

non-invasive technique which can be employed 

with other diagnostic tools for better diagnosis of 

the disease. Such endeavours hold the potential to 

revolutionize COPD diagnosis by facilitating 

timely intervention and improving patient 

outcomes. Researchers and scientists equipped 

with the knowledge, resources and expertise in 

the domain of machine learning should leverage 

the microbiome data available for detecting 

COPD.  
 

https://www.zotero.org/google-docs/?FwrhA3
https://www.zotero.org/google-docs/?P6M5SR
https://www.zotero.org/google-docs/?ZNbsDD
https://www.zotero.org/google-docs/?znNv4k
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Conclusion 
Understanding the role of microbial dysbiosis in 

COPD is an active area of research, as it may have 

implications for the development of new 

therapeutic strategies. Restoring a healthy lung 

microbiome through interventions such as 

probiotics or targeted antimicrobial approaches is 

being explored as a potential avenue for managing 

COPD. However, further research is needed to 

fully understand the complex interactions 

between microbial dysbiosis, the host immune 

response, and COPD pathogenesis. Continued 

studies will help shed light on the mechanisms 

underlying dysbiosis and its impact on disease 

progression, ultimately paving the way for 

improved diagnostic and therapeutic approaches 

for COPD. In recent years, the application of 

ML/DL tools in the medical field has evolved 

rapidly, and is being implemented in screening 

and diagnosis, classification and assessment, 

management and monitoring, as well as in rate of 

readmission of COPD patients, which has been 

summarized in the review. Further, explosion in 

the vast availability of gut microbial data is too 

massive to be analyzed using conventional 

methods. Therefore, ML and DL tools offer 

effective solutions and should remain the focus of 

further research and development in preventing 

COPD readmissions through microbial 

modulation. These tools could be further utilized 

for analyzing different responses to treatment, 

providing therapeutic guidance for specific 

phenotypes required in precision medicine, and 

establishing a management system for COPD. 
 

Abbreviations 
COPD: Chronic Obstructive Pulmonary Disease; 

ML: Machine learning; DL: Deep learning; AI: 

Artificial Intelligence, IBS: Irritative Bowel 

Syndrome; CRC: Colorectal Carcinoma; BMI: 

Body-Mass Index; CNN: Convolutional Neural 

Networks; ROC: Receiver Operating 

Characteristic; AUC: Area Under the Curve.    
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