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Abstract 
Deep learning, a subset of artificial intelligence in computer science, has become crucial in understanding the structural 
and functional connectivity of the human brain connectome. It offers novel insights into the comprehensive 
probabilistic modeling of the brain. This study aims to provide an overview of various deep learning techniques applied 
to the human brain connectome and to review significant structural and functional connectivity findings using MRI 
images for different brain diseases. A detailed literature search was conducted using the PRISMA model across 
databases such as Scopus, web of Science, and PubMed. The primary search terms included "Brain," "Connectome," 
"Deep Learning," and "Neuroimaging or MRI." This search identified 113 relevant studies out of a total of 882. The 
systematic review found that deep learning algorithms are rapidly widely used in neuroscience. Traditional neural 
network approaches, such as convolutional neural networks (CNN), graph neural networks (GNN), and artificial neural 
networks (ANN), remain prevalent. These algorithms are often tailored to address specific tasks, with MRI images 
serving as the primary data source for brain imaging. Deep learning has significant potential to enhance the 
understanding of structural and functional brain models in neuroscience applications. However, several challenges 
must be addressed to utilize deep learning more effectively in brain mapping. Accumulating detailed data is crucial for 
developing intelligible DL algorithms to achieve this goal. 
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Introduction
Artificial Intelligence has played a major role in the 

health care sector especially in Neuroscience in the 

last two decades. The Brain is the body's natural 

primary control system, where neurons 

accomplish all of these processes in the brain (1). 

Neurons are the neurological program's basic 

structural and functional units; myriad kinds of 

neurons are present in the brain. These neurons 

are connected through special connections called 

synapses. In contrast to neurons, the brain consists 

of supportive cells known as nerve fiber cells. The 

human brain is estimated to have 86 to 100 billion 

neurons (nerve cells) and 125 trillion synapses 

alone, more than 1000 trillion synapses on average 

(2). Brain interconnectivity enables neurons to 

exhibit a variety of physiological reactions, and 

also create and disseminate information 

collaborate their activities over short and large 

ranges, and maintain an architectural legacy of 

past incidents. The pattern connection is 

connected and impacts almost every aspect of the 

visual cortex resulting in a strong (3). The 

connectome, which details the full network of 

neuron and brain area connections, is central to 

understanding brain connectivity. Using these 

techniques, it is possible for the first time to collect 

detailed whole-brain data sets from multiple 

human participants and compare them to personal 

information regarding neural activity, cognition, 

behavior, and genealogy (4). Quantifying, 

analyzing, and modeling these challenging data 

sets necessitates employing the mathematical and 

theoretical principles of complex networks (5). As 

a result of theoretical and technical advancements, 

a new explanation of the human brain is emerging; 

one that sees cognitive functions as the result of 

jointly synchronized mechanisms in a network of 

complex relationships (6). A connectome is 

primarily concerned with structure, or the physical 

connections between brain components in large 

numbers but at a limited number. A consistent 

anatomical description should eventually result 

from empirically mapping structural connections 

since structural connectivity serves as a crucial 

point of methodo- logical convergence (7). There 

are multiple nested spatial scales of structural 
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connectivity in the human brain. The organization 

can be broadly categorized into three levels: the 

microscale involving synapses and individual 

neurons, the macroscale encompassing 

anatomically distinct brain regions, and the 

mesoscale comprising neuronal populations and 

their connections (8). In the structural network, 

functional connectivity fluctuates considerably 

over time, indicating shifts in internal states or 

neural reactions to stimuli or tasks (9). A 

functional correlation typically refers to the 

statistical link between distant neural components 

and can be assessed through various methods, 

each providing unique insights into brain function. 

Mapping the human connectome is a major focus 

of contemporary research. Measurements help 

establish the pairwise connections between nodes 

once these nodes are categorized as structural, 

functional, or effective connectivity. A series of 

pairwise associations can be arranged into a 

connection matrix, which illustrates the structure 

of the graph or network. The connections between 

nodes form the graph's adjacency structure, 

identifying which nodes are direct neighbors. 

Depending on the method used to define these 

connections, graphs can be categorized as binary 

(edges are either present or absent), weighted 

(edges have varying values), undirected (edges 

indicate a symmetrical relationship), or directed 

(edges indicate an asymmetrical relationship, 10). 

Medical Imaging (MI) data, as well as spatial and 

temporal data, were created in large quantities by 

healthcare institutions. Health researcher's and 

clinicians' approaches to detecting, interpreting, 

and evaluating structural, and functional 

connectivity of the brain for degenerative diseases, 

as well as assessing risk and reactions to 

medicines, have drastically changed as a result of 

the study of such data (11). Moreover, "physically" 

processing medical data, especially brain imaging, 

is time-demanding, and the probability of 

interpretation inaccuracies isn't insignificant. Day-

to-day accuracies and variances in diagnostic 

imaging, for example, are estimated to be greater 

than 5% (12). This led to the development of fresh 

approaches to assist clinicians’ inefficiently and 

properly processing information. The use of 

advanced algorithms has increased in popularity 

as computational power has expanded and medical 

data quality has improved (13). Deep Learning 

(DL), a branch of AI, has revolutionized a range of 

neurosurgical activities in recent years. DL 

algorithms especially have received attention in 

computer vision, exceeding other techniques on a 

variety of high-profile image analysis assessments 

(14). Unlike traditional machine learning models, 

deep learning automatically learns useful 

representations and features directly from raw 

data, eliminating the need for manually calculating 

and selecting potentially relevant variables (15). 

Due to major advancements in computing power, 

such as the use of Graphics Processing Units 

(GPUs), these algorithms have become efficient for 

learning from 3D and 2D images commonly used in 

the medical field. Although these algorithms have 

achieved remarkable results over the years, many 

traditional computer-based methods and 

algorithms are now impractical in real-world 

scenarios because of the increased data complexity 

and volume (16). In medical imaging, structures 

like tumors and tissues can be too intricate for 

conventional equations or models to capture 

effectively. Furthermore, it's often difficult for 

specialists to establish clear guidelines, 

particularly in tasks like disease monitoring and 

processing (17). Over the past ten years, deep 

learning (DL) has garnered significant attention in 

brain imaging and cognitive neuroscience fields 

(18). Deep learning (DL) has shown great promise 

in diagnostic tasks, particularly in theoretical and 

practical studies of physiological and pathological 

components. DL methods have been applied to 

brain data processing for diagnosing conditions 

such as hypertension, dementia, 

neurodegenerative disorders, and tumors (19). 

However, it is indeed important to emphasize that, 

owing to the difficulty and quantity of brain data, 

DL algorithms typically require many stages to 

accomplish things. Image preprocessing, feature 

selection and classification, and image 

segmentation, for example, are frequently 

required as preliminary steps to increase the 

performance of the algorithms to reasonable 

standards. This research delves into recent 

endeavors to map the intricate neural pathways 

within the human brain. By employing diverse 

methods, preliminary brain maps are emerging, 

offering glimpses into the brain's organizational 

structure. While current insights are limited and 

fragmented, the journey to fully charting the 

human connectome has undeniably commenced, 

marked by rapid advancements. Our research 
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tackles key gaps in understanding the human 

connectome and its role in neuroscience. While 

many studies focus on either structural or 

functional connectivity, we emphasize the need to 

integrate multimodal data for a fuller picture. 

Traditional machine learning often falls short due 

to the complexity and high dimensionality of brain 

data. Despite progress in deep learning for medical 

imaging, mapping the connectome for diseases like 

Alzheimer’s and schizophrenia remains 

challenging. We also see a lack of exploration in 

combining different types of connectivity for 

personalized diagnoses. Lastly, current methods 

often lack robust preprocessing pipelines, which 

our work aims to address. A primary focus of this 

article is on providing an overview of deep 

learning algorithms that can directly contribute to 

mapping the human brain connectome. This paper 

aims to explore the central concepts and practical 

applications of Machine Learning and Deep 

Learning, alongside their connections to 

neuroscience. First, we introduce the search 

strategy employed in this study, which follows the 

Preferred Reporting Items for Systematic Reviews 

and Meta-Analyses (PRISMA) framework. 

Secondly, this paper summarizes the key elements 

utilized in connectome-based deep learning 

studies. It also provides an extensive review of 

recent methods for connectome classification 

based on brain structural and functional 

connectivity. Considering the latest developments 

and the growing potential of deep learning in 

understanding brain disorders and pathologies, 

we review current advances in this field. Finally, 

we conclude with research gap and potential using 

connectome with Neural network model effective 

in future for better undersanding of neuroimaging 

data. 
 

Search Strategy 
The Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) standards 

were used to conduct a systematic literature 

review. With the assistance of a professional 

librarian, the search queries were carefully 

constructed, incorporating deep learning and 

Connectome-related search phrases. Using the key 

terms "Brain", "Connectome", "Deep Learning" and 

"Machine Learning" A comprehensive literature 

search was performed across major databases, 

including Scopus, Web of Science, and PubMed, up 

until August 30, 2024. Table 1 provides a detailed 

list of the search keywords used. Additional 

references were gathered through cross-

referencing key articles. Out of 882 studies, 113 

were identified that utilized deep learning 

algorithms for various purposes. The search 

strategy flow chart and the annual publication 

statistics are depicted in Figure 1. 

 

Table 1: Keywords Used for Systematics Review 

Database Keywords 

Scopus TITLE-ABS-KEY ( "Brain"  AND  "Connectome"  AND  ( "Deep Learning"  OR  

"Machine Learning" ) )  AND  ( LIMIT-TO ( PUBSTAGE ,  "final" ) )  AND  ( LIMIT-TO 

( DOCTYPE ,  "ar" ) )  AND  ( LIMIT-TO ( LANGUAGE ,  "English" ) )  AND  ( LIMIT-

TO ( SRCTYPE ,  "j" ) ) 

Web of Science "Brain" AND "Connectome"  (Abstract) AND "Machine Learning" OR "Deep 

Learning"  (All Fields) 

Pubmed "Brain"[Title/Abstract] AND "Connectome"[Title/Abstract] AND ("Deep 

Learning"[Title/Abstract] OR "Machine Learning"[Title/Abstract]) 
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Figure 1: The Diagram Depicts the PRISMA-Based Selection Process, Narrowing 882 Papers to 113 for 

the Final Analysis 

After eliminating duplicates and irrelevant titles 

and abstracts, the remaining papers were 

meticulously screened to identify those pertinent 

to our research topic. The screening process 

involved evaluating each paper against a set of 

exclusion criteria are There is no full-text available, 

No machine learning or deep learning applications, 

Abstracts of conferences, Papers presented at 

conferences, Textbooks, Book chapters and 

Languages other than English. Any paper that met 

at least one of these criteria was excluded from 

further consideration. After thoroughly examining 

a vast collection of articles and their supporting 

references, we meticulously selected 113 pieces of 

research that met our strict criteria for inclusion in 

this systematic review. Every article deemed 

relevant to our investigation was incorporated and 

categorized accordingly. The findings extracted 

from each study were carefully considered for our 

analysis are Name of the first author, Publication 

year, Primary objective, Methodology, Type of 

Data, Dataset, AI/ML/DL methodology and  

Benchmark measurement. Based on our reasoning, 

we assessed the distribution of all published 

articles across areas like structural connectivity, 

functional connectivity, deep learning algorithms, 

and types of input data. Given the varied 

applications, we concluded that a quantitative 

synthesis was inappropriate. As a consequence, a 

narrative method is used to give a qualitative 

synthesis of the data. Given the enormous number 

of articles in the literature and the current results, 

categorization tasks have been thoroughly 

investigated, both statistically and qualitatively. 

Finally, we differentiated structural and functional 

connectivity-based categorization tasks. Indeed, 

given the encouraging findings produced by these 

methodologies, we consider the latter to be a 

developing problem that requires further 

investigation. Figure 2 represent complete flow of 

the systematic review process on brain 

connectome research using deep learning models. 

It outlines each step from the initial literature 

search to the final selection and analysis of 

relevant studies.
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Figure 2: Complete Flow of Systematic Review on Connectome Using Deep Learning Mode

Data type 
In recent years, multiple technologies have 

emerged to study the brain's structure without 

invasive neurosurgery. The introduction of 

Computed Tomography (CT) imaging and 

magnetic resonance imaging (MRI) has allowed for 

more effective identification and management of 

neurological disorders (20). A CT image is a 

depiction of cross-sectional views generated by 

computer-processed combinations of numerous X-

ray measurements taken from different angles 

(21). Using Positron Emission Tomography (PET), 

metabolic processes can be observed at the cellular 

level. High-quality images of biological structures 

are achieved using MRI by using a strong magnetic 

field and radio waves (22).The magnetic 

characteristics of MRI are determined by the 

properties of atomic nuclei. During the test, the 

protons are aligned inside the water molecules of 

the tissue being studied by a high, homogeneous 

external magnetic field. The injection of external 

Radio Frequency (RF) radiation perturbs or 

disrupts this alignment (or magnetization). RF 

radiation is released as the nucleus restores to its 

resting arrangement through various relaxation 

processes. The emitted signals are recorded after a 

certain time has elapsed since the initial RF.  

Diffusion Tensor Imaging (DTI) is a neuroimaging 

technique that uses magnetic resonance to 

evaluate the location, direction, and anisotropy of 

the brain's white matter tracts. Instead of solely 

using this data to assign contrast or colors to pixels 

in a cross-sectional image, it can be employed to 

measure the restricted diffusion of water in tissue, 

allowing for the creation of neural tract images 

(23). Diffusion-weighted imaging (DWI) is a 

method for detecting random movements of water 

protons. Water molecules generally move freely in 

the extracellular space, but their movement is 

significantly restricted within the intracellular 

environment. In ischemic brain tissue, diffusion, or 

spontaneous movement, becomes severely limited 

(24). During ischemia, the sodium-potassium 

pump ceases to function, leading to an intracellular 

accumulation of sodium. The resulting osmotic 

difference causes water to move from the 

extracellular to the intracellular space (25). 

Subcellular water mobility becomes restricted, 

producing a very high signal on DWI. 

Consequently, DWI is a highly sensitive method for 

detecting strokes; Table 2 contains all of the 

reviewed article's input data.
 

Table 2: Type of Brain Image 

Brain Image Definition 

MRI MRI provides detailed images of the brain, spinal cord, and vascular structures, and 

allows visualization in all three planes: axial, sagittal, and coronal. 

MRI T1 Weighted 

Image 

Short TE and TR timings are used to create T1-weighted images. The contrast and 

brightness of these images are primarily influenced by the T1 properties of the tissue. 

MRI T2 Weighted 

Image 

Longer TE and TR periods are used to produce T2-weighted images. The contrast and 

brightness of these images are primarily influenced by the T2 properties of the tissue. 

MRI Flair The Flair sequence is similar to a T2-weighted image but uses much longer TE and TR 

periods. 
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Diffusion-

weighted imaging 

(DWI) 

This MR imaging technique is based on detecting the random Brownian motion of 

water molecules within a tissue voxel. Generally, highly cellular tissues or those with 

cellular swelling exhibit lower diffusion coefficients. Diffusion imaging is particularly 

useful in identifying tumors and cerebral ischemia. 

Diffusion Tensor 

Imaging 

Diffusion tensor data is used in tractography, which enables 3D imaging of particular 

white matter pathways. With the use of DTI Tractography, one may locate the 

thalamocortical tract or the corticospinal tract, for instance. 

Some modern optimization frameworks aim to 

predict clinical severity from resting-state fMRI 

(rs-fMRI) data. These frameworks decompose 

correlation matrices into a sparse set of 

representative subnetworks, forming a network 

manifold. The steps in a competitive environment 

are combined using patient-specific non-negative 

coefficients and a linear regression model that 

utilizes these coefficients to estimate clinical 

severity (26). Recent innovations introduce Image 

Quality Transfer (IQT), a cutting-edge 

computational imaging technique. IQT uses 

machine learning to translate the rich data 

obtained from specialized experimental medical 

imaging devices to the more extensive but lower-

quality data collected in routine scans. Some 

research has examined the individual and 

combined strengths and weaknesses of various 

measurements, using resting-state fMRI data from 

the UK Biobank and the Human Connectome 

Project. They tested over 9000 different pipeline 

versions on a total of 14000 participants to identify 

the optimal one NBS-Predict is a novel machine 

learning method that integrates the capabilities of 

machine learning with the ease of the Network-

Based Statistic (NBS). This innovative technique 

uses ML models to swiftly and accurately identify 

neuroimaging biomarkers by embedding the 

models within a cross-validation framework. NBS-

Predict utilized 1200 brain scans from the Human 

Connectome Project to make predictions about 

brain function. 

Deep Learning 
Deep learning approaches are successful in vision, 

voice, and language processing, and there is rising 

interest in applying them to high-impact 

application fields such as healthcare. While most of 

the success has been in dealing with clinical 

pictures and volumes, as well as textual reports, 

more recent attempts have concentrated on 

difficult data sources, such as integrated health 

records, knowledge graphs, and so on. These 

initiatives have depended on applying basic 

formalisms like convolutional neural networks to 

data that is arbitrarily arranged. Graph Neural 

Networks (GNNs), are known for their tremendous 

expressive capabilities with graph-structured data 

and are highly effective with population graphs in 

clinical diagnoses, such as autism (27). Table 3 

contains all of the deep learning methods used in 

this study.

  

Table 3: Deep Learning Algorithms 

Algorithm Mechanism 

Convolutional Neural 

Network(CNN) 

Form of artificial neural network that has different layers and is mostly used 

for image processing and object detection in image recognition and 

processing. They are especially intended to analyze pixel input (28).  

Recurrent Neural 

Network(RNN) 

The LSTM output is used as an input in the current phase, and it has internal 

memory that allows it to recall previous inputs. The use of RNNs to caption 

images, analyze time series, process natural language, know handwriting, and 

translate is widespread (28). 

Multilayer 

Perceptron(MLP) 

A form of feedforward artificial neural network (ANN), the multi-layer 

perceptron is often referred to as the deep learning architecture. The most 

popular algorithm, "Backpropagation," is employed by Train MLP (28). 

Self-Organizing 

Map(SOM)  

 Its type of unsupervised learning is the Self-Organizing Map (SOM), often 

known as the Kohonen Map. It's known as a dimensionality reduction 

approach based on neural networks. The fundamental merit of using a SOM is 

that it simplifies the visualization of high-dimensional data (28). 

Deep Belief 

Network(DBN) 

It's a multi-layer generative graphical model that incorporates several 

unsupervised networks into one. In order to achieve the ultimate goal, we 
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must develop an unsupervised training method for each contrastive 

divergence-dependent subnetwork that is more efficient (28). 

Restricted Boltzmann 

Machine(RBM) 

A Restricted Boltzmann Machine (RBM) is a type of generative probabilistic 

neural network that can generate a probability distribution across a large 

number of inputs. RBMs have been instrumental in reducing data, 

categorizing, predicting, content-based filtering, pattern recognition, 

template matching, and many more applications (28). 

Autoencoders The auto-encoder is a significant unsupervised learning technique in which 

neural circuits are utilized to learn representations (AE) (28). 

Generative Adversarial 

Network(GAN) 

A Generative Adversarial Network (GAN) is a neural network architecture 

that uses generative modeling. GANs are constructed from two neural 

networks: the generator and the discriminator (28). 

Machine and deep learning techniques have the 

potential to enhance the accuracy of fiber tracking 

and connectome reconstruction. These methods 

have recently shown success in understanding the 

relationship between dMRI data and local fiber 

orientations (29). This led to the idea of machine 

and deep learning tractography, where a neural 

network is trained to predict the direction of 

streamlining propagation based on dMRI signal 

patterns. Deep learning algorithms offer the 

advantage of not requiring a specific diffusion 

model or signal parameterization, which can 

provide greater robustness to variations in data 

collection methods and noise. Various network 

topologies, such as recurrent convolutional 

networks and multi-layer perceptron 

architectures, have been explored about this new 

fiber-tracking approach. 

Qualitative Metrics 
Performance measurement is a fundamental part 

of all ML and DL applications. In assessing machine 

learning and deep learning classification tasks, 

accuracy, precision, sensitivity, and specificity are 

commonly used measures. The accuracy and 

precision of a test indicate its fundamental 

reliability, while specificity and sensitivity reveal 

its likelihood of producing false negatives and false 

positives. Despite their widespread use, these 

characteristics are not always a meaningful 

measure in certain situations, as previous 

assessments have noted. These features are 

commonly used, even though, as earlier analyses 

have pointed out, they may not be a relevant metric 

in some situations. In individuals with mesial 

temporal lobe epilepsy, researchers investigated 

whether deep learning applied to whole-brain 

structural connectomes could accurately predict 

postoperative seizure outcomes, As a result, more 

research is including the Positive Predictive Value 

(PPV) and Negative Predictive Value (NPV) in their 

analyses (NPV, 30).  Recent studies examine Gray 

Matter (GM) network topology in people with 

Paradoxical Kinesigenic Dyskinesia (PKD) to 

determine if GM network characteristics may serve 

to identify the disorder, one of the most commonly 

used assessment metrics for testing or visualizing 

the performance of a machine learning 

classification problem is the Area Under the Curve 

(AUC) of a Receiver Operating Characteristics 

(ROC) curve. As the AUC increases, so does the 

model's ability to predict (31).Lastly, researchers 

should be commended for their efforts to test their 

methodologies to minimize human error and 

manage variances in brain data The development 

of validation approaches to this end is essential 

(32). In terms of cross-validation, leave-one-out, 

and leave-one-group-out procedures continue to 

be the most practical (33). Through these 

techniques, we can enhance the accuracy of ML and 

DL algorithms and eliminate biases that may be 

present in singular datasets (34). 
 

Results and Discussion 
In the past 10 years, the number of studies 

analyzing deep learning models has increased 

exponentially. The annual publication statistics are 

depicted in Figure 3 as a supporting tool for 

various paradigms of brain care; such 

methodologies include Structural and Functional 

connectivity information and deep Learning-

assisted brain care in patients with epilepsy, brain 

tumors, neurological disorders, Vascular 

dementia, neurological damage, and 

cerebrovascular abnormalities. There was also a 

tendency toward customized solutions and fewer 

machine learning methods. The most often utilized 
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input data types were MRI, MRI T1 Weighted 

Image, MRI T2 Weighted Image, MRI Flair, 

Diffusion-weighted imaging (DWI), Diffusion 

Tensor Imaging, and MRI data. The most 

commonly examined applications were 

radiological brain tumor segmentation and 

classification. Below this section, we summarized 

in the form of qualitative, quantities of recent 

research publications and methods proposed by 

the various researchers in Human brain 

connectome mapping using deep learning 

methods.

 
Figure 3: Arctiture of Connectome Using Deep Learning

Deep Learning for Connectome 
Recent studies of deep learning-based methods in 

neuroimaging models like the fiber Orientation 

Distribution Function(fODF) peaks are directly 

segmented by CNNs, eliminating the need for 

tractography, image registration, or Parcellation 

(35) and Lacking anatomical data or multi-

registration, the technique can predict tissue 

segmentation straight from fresh dMRI data, 

including data gathered with diverse collection 

procedures (36).  Toolbox for image processing in 

neuroscience in recent advancements like "Brain 

Network Construction and Classification 

(BrainNetClass)" toolkit to push more advanced 

brain network construction approaches to the 

field, including many state-of-the-art techniques 

created lately to capture complicated and high-

order interactions across brain areas. Table 4 

summarizes recent studies concerning Deep 

Learning or Machine learning techniques with 

human brain connectome mapping. Among 

various approaches proposed in recent years in a 

combination of neuroscience and Machine 

Intelligence to solve brain connectivity function 

and various brain diseases in the Human brain 

with datatype, dataset, and source of the dataset.
 

Table 4: Recent Studies on Deep Learning for Connectome 

Aim ML / DL  Type of Data Dataset - Source  

Model-based Deep Learning architecture 

(37) 

CNN dMRI 7 subjects / HCP 

Dice similarity coefficient (DSC) (38) CNN MRI Healthy neonates / 

HCP 

Functional Connectivity Pattern to 

Schizophrenic Control (39) 

Auto 

Encoder 

fMRI 734 Subjects / HCP 

BrainNetCNN - structural brain networks 

(40) 

CNN DTI 168 DTI images /  

HCP 

Angular correlation coefficient (ACC) 

(41) 

DNN DW-MRI 12 subjects / HCP 

Deep Learning for Thalamus 

Segmentation (42) 

CNN dMRI 90 subjects / HCP 

Structural connectomes (43) CNN dMRI and rs-f MRI 20 healthy adults / 

HCP 
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Connectome-based CNN model for early 

Alzheimer's detection (44) 

BrainNetCNN Structural MRI and 

DTI data  

360 subjects 

Brain connectivity to predict sex, age, 

cognition, and psychopathology 

accurately (45) 

BrainNetCNN Diffusion MRI  8183 connectomes 

Machine learning techniques based on regional 

temporal dependence measures achieve a sex 

classification accuracy of up to 81 percent (46). 

Provide a unique, fast, and fully automated deep 

learning approach for segmenting OB tissue on T2-

weighted (T2w) whole-brain MR images with sub-

millimeter resolution. The researchers used three 

classic image-denoising approaches to study the 

impact of noise reduction on empirical data 

captured at a 0.6 mm isotropic resolution: utilizing 

a denoising convolutional neural network, block-

matching and 4D filtering, and adaptive optimal 

non-local-means methods (47). Using deep 

learning, which is effective in a variety of big-data 

studies, the researchers combined clinical 

characteristics and MRI data to predict ALS patient 

survival. From the Human Connectome Project 

(HCP) dataset (GMV), gray matter volume was 

calculated using high-resolution magnetic 

resonance imaging data obtained from 100 healthy 

young adults. Tests of cognitive flexibility were 

conducted with Dimensional Change Card Sorts 

(DCCS). Relevance vector regression (RVR), a 

multivariate machine learning technique, was used 

to investigate the association between GMV and 

cognitive flexibility performance (48). Several 

investigators have trained the GAN algorithm 

using 1112 MRI images from the Human 

Connectome Project to create a generative model 

of a healthy human brain's T1-contrast 3D MRI 

image volume. A total of 1112 brains were 

removed from their skulls and mapped to a brain 

atlas and Utilizing 1000 s/mm² shell data from the 

Human Connectome Project (HCP), explored the 

potential of applying deep learning to the complete 

three-shell data sets (1000, 2000, and 3000 s/mm² 

from HCP) to estimate the information content 

obtained by 8th order MT-CSD. At present, most 

deep learning approaches represent data on a 

mesh surface, and the geometric CNN (gCNN) 

performs pattern recognition in a multi-shell mesh 

structure (49). DeepDTI uses data-driven 

supervised deep learning to determine the six 

unique unknowns in a diffusion tensor from six 

diffusion-weighted images (DWIs), decreasing the 

data requirements of DTI to six pictures (50). 

Interestingly, a deep neural network (DNN) was 

developed to decode various brain task states 

directly from fMRI data using support vector 

machine (SVM)-based multivariate pattern 

analysis (MVPA).  

Deep Learning Based Structural 

Connectivity Analysis 
In this section many current studies that structural 

brain connectivity does not determine cellular 

interactions rigidly. Instead, it reduces the 

dimensionality of the neuronal state space by 

creating constraints or skeletons. Recent studies 

on structural connectivity show the presence or 

absence of physical connections, such as synapses 

and pathways, as well as synaptic weight, time 

delay, and biophysical effectiveness is referred to 

as edge representation (synaptic weight). 

Microscopy is the reconstruction of tissue volume, 

Neuroanatomy is the tracing of pathways, and 

Neuroimaging is tractography. Networks can be 

weighted or unweighted, sparse and directed 

(projects), or sparse, undirected, etc., The 

anatomical structure is thought to be critical for 

understanding neural dynamics and, therefore, 

cognition and behavior, which is, in turn, a key 

rationale for assembling the human connectome. 

The dynamics of neural networks remain 

fluctuating and sensitive to dynamic perturbations 

in this reduced low-dimensional space. Many 

studies related to investigating structural brain 

anomalies associated with autism spectrum 

disorder (ASD), used Support Vector Machines 

(SVM) and many studies of children's brain PADs 

rely on a single MRI modality or a single ML 

algorithm. Based on brain modeling, AutoML 

predicts age differences and mental symptoms in 

children, with data derived from MRI samples of 

healthy and unhealthy children in different 

locations in New York City (51). Using network 

analyses of cerebral magnetic resonance imaging 

(MRI T1 and T2) data, disease propagation was 

predicted in 208 patients with amyotrophic lateral 

sclerosis (ALS) at Utrecht's outpatient clinic for 

motor neuron diseases (52). The developing 

Human Connectome Project (dHCP) produced 

automated claustrum segmentation in neonates 
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using Transfer Learning of T2-weighted MRI of the 

claustrum in 558 newborn brains MRIs (53). 

Beyond T1-weighted scans, resting-state fMRI, and 

diffusion MRI data, models that combine multiple 

neuroimaging techniques enhance the ability to 

predict individual differences in cognitive 

performance and Resting-state fMRI employs 

sophisticated computational methods to 

investigate functional and structural distinctions 

between the brains of healthy individuals and 

those with various disorders; Examining T1-

weighted MRI and diffusion-weighted imaging 

(DWI) reveals how surgical procedures modify the 

structural white matter network and how these 

network changes correlate with seizure outcomes 

post-epilepsy surgery (54). As reported in Table 5 

studies consider Machine Learning or Deep 

Learning in the structural connectivity of various 

pathological and structural MRI data of current 

investigation are reported. 

 

 

 

Table 5: Structural Connectivity: Aim, Pathology, Data Type, Dataset, ML/DL Method, Dataset, Data Source 

Aim  Pathology / 

Anatomical 

ML/ DL Type of 

Data 

Dataset Dataset 

Source 

Persistent Post–

Concussion 

Symptoms (PPCS) in 

mTBI (55) 

mild Traumatic 

Brain Injuries 

(mTBI) 

SVM MRI, rs-

MRI 

110 mixed 

recovery of 

mTBI 

Alberta 

Children’s 

Hospital 

Brain connectivity 

and exploration of 

neurological 

dysfunction (56) 

Fiber orientation 

Distribution 

Function (fODF) 

CNN MRI, DWIs 288 Subjects  HCP 

Late-Life Depression 

(LLD) and Mild 

Cognitive 

Impairment (MCI) 

(57) 

Alzheimer's 

Disease (AD) 

SVM MRI 91 Subjects HCP 

Identifying Diffuse 

Axonal Injury (DAI) 

with Traumatic 

Brain Injury 

(TBI) (58) 

DAI and TBI SVM MRI 179 TBI 

patients 

HBN 

neuroimaging 

data 

Predicting surgical 

treatment outcomes 

in groups of patients 

with Temporal Lobe 

Epilepsy (TLE) (59) 

TLE SVM MRI, DTI 35 with 

refractory TLE 

treated 

The 

University of 

Bonn in 

Germany 

Linkage/Association 

between multimodal 

brain imaging data 

(60) 

Schizophrenia FFNN MRI 298 subjects 3-Tesla 

Siemens Trio 

scanner 

Complexities of 

neurological and 

psychiatric disorders 

(61) 

Schizophrenia 3D CNN / 

GNN 

MRI - OpenVC 

dataset 

Schizo-Net model for 

SCZ diagnosis (62) 

Schizophrenia Schizo-Net 

Neural 

Network 

EEG 28 Subjects Private 
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Deep Learning Based Functional 

Connectivity Analysis  
Deep learning methods have attracted in analysis 

or segmentation of functional connectivity in the 

human brain in recent years; A recently developed 

machine learning approach, Connectome-Based 

Predictive Modeling (CPM), is adapted to whole-

brain functional connectivity data ("Neural 

Fingerprints") with ANN and rs-functional MRI to 

develop a reliable prediction model of decision 

impulsivity; Researcher analyzed functional brain 

imaging (fMRI) data from 168 healthy people who 

had no history of neurological or psychiatric 

disorders and used machine learning to 

reconstruct trait narcissistic characteristics from 

whole-brain resting-state functional connectivity 

(RSFC, 63). Incorporating statistically regularized 

Dynamic Dictionary Learning (sr-DDL) and LSTM-

ANN with resting-state functional MRI (rs-fMRI) 

connectivity and diffusion tensor imaging (DTI), 

construct a system for detecting brain connections 

associated with autism behavior (64).Connectivity 

is defined as the statistical correlation between 

neuronal time courses (for example, spikes, EEG, 

and BOLD) and Empirical Techniques such as 

Neurophysiology: The relationships between 

EEG/MEG BOLD signals include correlation, 

synchronization, coherence, and phase locking. 

The analysis also involves examining cross-

correlations, partial correlations, and network 

characteristics, such as fully and weighted (or 

unweighted) connections after thresholding, 

focusing on undirected connectivity.  As reported 

in Table 6 studies consider Machine Learning or 

Deep Learning in Functional Connectivity of 

various pathological and functional MRI data of 

current investigation are reported. 
 

Table 6: Functional Connectivity: Aim, Pathology, Data Type, Dataset, ML/DL Method, Dataset, Data Source 

Aim Pathology / 

Anatomical 

ML/ DL Type of Data Dataset Dataset 

Source 

FC in Preterm 

Infants (65) 

Neurodevelopmen

t Disorders 

SVM rs- MRI,  T2-d MRI 274 Subjects Philips 

Medical 

Systems, 

Best, The 

Netherland

s 

Developmental 

Dyslexia in 

White Matter 

(66) 

Developmental 

dyslexia 

Linear 

SVM 

MRI and DTI 528 Subjects Center for 

Brain 

Research, 

Beijing 

Normal 

University 

Brain features 

ASD from 

Typically 

Developing 

(TD, 67) 

ASD Conditiona

l Random 

Forest 

(CRF) 

MRI 93 Subjects University 

of 

California 

San Diego 

Brain 

Parcellations 

on ML Models 

(68) 

ASD CNN rs-fMRI 539 Subjects ABIDE 

Functional 

connectivity 

patterns (69) 

ASD DTL-NN rs-fMRI 

 

regions of 

interest 

(ROIs) 

ABIDE 

DL predicts 

task-based 

contrast maps 

(70) 

FC CNN fMRI 1200 

Subjects 

HCP 
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classification of 

individual 

independent-

component (IC, 

71) 

FC MLP fMRI 1811 

Participants 

GIN-IMN 

Brain network 

of anxiety (72) 

OCD ANN fMRI 879 

participants 

HCP 

Transdiagnosti

c predictive 

working 

memory model 

(73) 

Schizophrenia, 

Bipolar  disorder 

ANN rs-fMRI 242 subjects HCP 

Differentiate 

patients with 

Major 

Depressive 

Disorder 

(MDD) from 

healthy 

controls (74) 

MDD SVM and 

GCN  

rs-fMRI 2338 

Participants 

REST-meta-

MDD 

consortium 

Directed 

structure 

learning Graph 

Neural 

Network (DSL-

GNN) in the 

context of 

effective brain 

connectivity for 

distinguishing 

disease and 

healthy 

controls (HC, 

75) 

Alzheimer's 

disease (AD) and 

Parkinson's 

disease (PD) 

GNN electroencephalogra

m (EEG)  

250 Subjects  Private 

 

Recent research used fMRI and deep neural 

networks (DNNs) and kernel regression to predict 

individual phenotypes using whole-brain resting-

state functional connectivity (RSFC) patterns in 

10,000 subjects from the Human Connectome 

Project (HCP, 21); Using functional Magnetic 

Resonance Imaging (fMRI), researchers present 

M2D CNN, a unique multichannel 2D CNN model. A 

novel CNN framework was developed to train 

embedded features from BFNs for Alzheimer's 

disease diagnosis with resting-state functional MRI 

(rs-fMRI) of 351 samples (172 NCs and 179 eMCIs, 

respectively) from several Philips 3T scanners 

(76). However, a better understanding of how the 

organization of the human brain is influenced by 

cell-specific neurobiological gradients (77). 

Recurrent neural networks (RNNs) are used on 

both rat and human brains to anticipate the 

temporal development of rs-fMRI slow oscillations 

in the future (78). When examining a large-scale 

fMRI database containing eight state/task 

combinations, several state-unspecific individual 

differences in whole-brain connection patterns 

were discovered. These variants are known as 

Common Neural Modes (CNM, 4). Assess the 

contribution of distinct brain areas' Connectome 

measurements to the categorization task using SC, 

static FC, and dynamic FC (dFC, 79). Using 3D-CNN 

models with down-sampling techniques such as 

pooling and/or stride, feature tables created from 

the shifted and scaled neural activations of a single 

functional MRI (fMRI) volume might be utilized for 
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the categorization of task information relating to 

the volume (80). 

Brain Disorder, Disease Using Deep 

Learning 
A total of 21 studies examined ML/DL for diseases 

in our studies. This includes categorization using 

structural and functional connectivity information 

to investigate neurological disorders. A 

classification algorithm was developed using MRI, 

SC, and FC data. We report on the distribution of 

data types, methods, and pathology in this section. 

It is worth noting that, due to the wide variety of 

subtasks discovered when employing anatomical 

information for categorization, a qualitative study 

strategy was chosen over a quantitative one. As 

reported in Table 7 studies consider Machine 

Learning or Deep Learning in Brain disorders, 

Disease using Deep Learning in the current 

investigation is reported.
 

Table 7: Brain Disease And Disorder Information: Aim, Pathology, Data Type, Dataset, ML/DL Method, 

Dataset, Data Source, and Performance Metrics 

Aim Pathology / 

Anatomical 

Machine / 

Deep Learning 

Algorithms 

Type 

of 

Data 

Dataset Dataset 

Source 

Performance 

Metrics 

Theory-of-

Mind (ToM) 

(81) 

autism SVM fMRI, 

DTI 

15 Subjects University 

of Alabama 

ASD Clinic 

MVAR 

ASD 

population 

using a 

random forest 

(RF) (82) 

ASD classification rs-

fMRI 

105 

children 

between 

the ages of 

9 and 13 

ADNI random 

forest, k-fold 

cross-

validation 

High degree 

and High 

connection 

weights as 

hubs 

(83) 

AD, ASD DFF-NN rs-

fMRI 

500 Subjects HCP 5-fold cross-

validation 

Structural 

covariance 

matrices and 

functional 

connectivity 

matrices (84) 

Schizophrenia SVM MRI 295 patients HCP 10-fold cross-

validation 

Parkinson's 

disease 

progression 

pattern (85) 

Parkinson's 

disease 

RF, SVM dMRI 21 Subjects PPMI Cross-

Validation 

Neural 

degenerative 

patterns in 

each TBI 

patient (86) 

Traumatic 

brain injury 

(TBI) 

ANN dMRI 17 Subjects Ghent 

University 

Hospital, 

Belgium. 

Cross-

Validation 

CNN trained to 

segment 

normal optic 

chiasms (87) 

Optic Chiasm CNN t1w -

MRI 

1049 

Participants 

HCP  

Classification 

of ASD 

patients (88) 

ASD Autoencoders MRI 449 Subjects ABIDE 10-fold cross-

validation 
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Functional 

Connectivity 

Biomarkers 

(89) 

PTSD and 

MDD 

SVM rs-

fMRI 

51 

Individuals 

NYSPI 10-fold cross-

validation 

Classification 

of mental 

disorder using 

structural 

connectivity 

data (90) 

Schizophrenia Sc-DGNN DTI, 

DWI 

88 Subjects  Accuracy 

Recent Researchers used deep learning from MRI 

and diffusion tractography on 37 children (aged 

11.8 to 3.1 years) with drug-resistant focal 

epilepsy to determine if current deep learning 

models detect epilepsy-related expressive and 

receptive language scores (91); Deep learning was 

investigated as a potential means of predicting the 

outcome of postsurgical seizures in patients with 

mesial temporal lobe epilepsy (TLE) using 

classification models with MRI data from 

hospitalized patients with 5-fold cross-validation 

of quantitative metrics using whole-brain 

structural connectomes. An alcohol severity 

assessment was conducted using the alcohol use 

disorders identification test (AUDIT) to evaluate 

problem drinking patterns in adults (age 22-60) 

who were subjected to a behavioral and 

neuroimaging protocol; generalizability of the 

model was checked in a validation sample (92). 

However, several investigations aimed to study the 

characteristics of brain Gray Matter (GM) network 

topologies in individuals with Paroxysmal 

Kinesigenic Dyskinesia (PKD) and analyze if the 

features of GM networks may have any diagnostic 

value and impact of epilepsy on the developing 

brain based on global metrics of network 

architecture generated by resting-state functional 

MRI (93). To determine the earliest detectable 

stage of dementia in simulated disease 

progression, the researcher developed dynamic 

models using data from the Nathan Kline Institute-

Rockland Sample database (94). Evaluate whether 

Parkinson's disease (PD) can be differentiated 

from healthy controls by applying a deep learning 

approach to analyze parameter-weighted metrics 

and the number of streamlines (NOS) using a 

convolutional neural network (CNN, 95). 

 

 

Challenge and Feature Scope 
In the past few years, significant progress has been 

made toward mapping the human connectome. 

Connectomes will be built on the theoretical and 

empirical studies of the brain's system 

architecture and behavior. In our study total of 113 

studies were identified out of 882, using Deep 

Learning algorithms for various purposes. We 

conducted a systematic and thorough literature 

search using the terms "Brain", "Connectome", 

"Deep Learning", and "Machine Learning". An 

analysis of 113 articles was conducted to find 

papers relevant to our research. A paper was 

screened for at least one of the following: No full-

text available; No machine learning or deep 

learning applications; No AI/ML/DL applications; 

and No language other than English. A common 

measure of deep learning classification is accuracy, 

precision, sensitivity, and specificity. In the last ten 

years, there has been exponential growth in the 

huge studies evaluating deep learning models as an 

advanced and assisting tool specifically in 

connectome or neuroimaging. By using deep 

learning, CNNs segment fiber Orientation 

Distribution Function peaks in neuroimaging 

models using deep learning. With this technique, 

fresh dMRI data can be used to predict tissue 

segmentation. The researchers combined clinical 

characteristics with MRI data to predict the 

survival of ALS patients. According to many 

studies, structural connectivity in brain regions 

does not determine neuron (spatial) interactions 

rigidly. As a result, it decreases the dimensionality 

of the spatial state space by creating constraints or 

skeletons. However, neural networks remain 

fluctuating and sensitive to dynamic perturbations 

in this reduced low-dimensional space. One recent 

study examined the effectiveness of deep neural 

networks (DNNs) and kernel regression using 

fMRI of 10,000 participants. Researchers have 
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created a novel multichannel 2D CNN model using 

functional magnetic resonance imaging (fMRI). An 

innovative CNN framework has been developed for 

Alzheimer's disease diagnosis. It is not always 

possible to measure these characteristics 

meaningfully in all situations. Researchers are 

incorporating the Positive Predictive Value (PPV) 

and the Negative Predictive Value (NPV) into their 

analyses. This includes categorization using 

structural and functional connectivity information 

to investigate neurological disorders. A 

classification algorithm was developed using MRI, 

SC, and FC data. Despite the impressive strides in 

using deep learning for brain connectome 

mapping, several challenges still need to be 

addressed. One major issue is the complexity and 

high dimensionality of neuroimaging data, which 

requires extensive preprocessing and advanced 

models to identify meaningful patterns. The 

dependence on large datasets, like those from the 

Human Connectome Project, reveals a lack of 

diverse and high-quality datasets that truly reflect 

different populations or include rare neurological 

conditions. While deep learning approaches such 

as CNNs and Auto Encoders show great potential, 

they often require extensive parameter tuning and 

can be hard to interpret, complicating their 

integration into clinical practice. Additionally, 

standardizing methods for mapping structural and 

functional connectivity is difficult due to variations 

in how data is collected and processed. Many 

studies also tend to focus on specific imaging 

modalities, missing out on the deeper insights that 

multimodal approaches could provide. These 

challenges highlight the urgent need for 

developing explainable and robust deep learning 

models that can effectively utilize diverse 

neuroimaging data for both clinical and research 

purposes. 
 

Conclusion 

A review of current literature on Deep learning 

methods that assist in mapping the human brain's 

connectome was presented in this study. Over the 

past decade, the rapid advancement of Deep 

Learning (DL) methodologies has profoundly 

impacted the field of brain care, particularly in the 

analysis of structural and functional connectivity. 

These innovative approaches have provided 

significant insights and improvements in the 

diagnosis and management of various neurological 

conditions, including epilepsy, brain tumors, 

vascular dementia, and other neurological 

disorders. The application of DL models, such as 

Convolutional Neural Networks (CNNs) and Deep 

Neural Networks (DNNs), has revolutionized the 

way we analyze brain connectivity. These models 

have demonstrated exceptional capability in 

processing complex neuroimaging data, leading to 

more accurate segmentation, classification, and 

prediction outcomes. The development of tools 

like the Brain Network Construction and 

Classification (Brain Net Class) toolkit exemplifies 

the progress in constructing and analyzing 

advanced brain networks. Functional connectivity 

analysis has also benefited greatly from DL 

advancements. Techniques like Connectome-

Based Predictive Modeling (CPM) and the 

integration of ANN-based methods have enabled 

researchers to develop reliable prediction models 

for various cognitive and behavioral traits. The use 

of statistically regularized Dynamic Dictionary 

Learning (sr-DDL) and LSTM-ANN has further 

enhanced the detection of brain connections 

associated with conditions such as autism and 

other developmental disorders. DL has proven to 

be a powerful tool in diagnosing and 

understanding brain disorders. Numerous studies 

have shown that DL models can effectively classify 

and predict outcomes for conditions like autism, 

schizophrenia, Alzheimer's disease, and traumatic 

brain injuries. These models have provided 

valuable insights into the structural and functional 

anomalies associated with these disorders, 

thereby improving diagnostic accuracy and 

informing treatment strategies. Despite these 

advancements, there are still challenges to 

overcome. Future research should focus on 

enhancing the generalizability of DL models across 

diverse populations and neuroimaging modalities. 

Additionally, the development of more 

comprehensive datasets that include a broader 

range of patient demographics and conditions is 

crucial for the continued improvement of these 

models. In conclusions, the integration of DL 

models in neuroimaging and brain care has 

significantly advanced our understanding and 

management of neurological conditions. These 

methodologies offer promising potential for more 

precise diagnosis, better understanding of disease 

mechanisms, and improved patient outcomes. Key 

findings show that both structural and functional 

connectivity data gathered from various imaging 
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techniques like MRI, DTI, fMRI, and diffusion-

weighted imaging are crucial for improving brain 

care. These approaches are being used to diagnose 

and predict conditions such as epilepsy, brain 

tumors, Alzheimer's, and vascular dementia. 

Customized deep learning models, including CNNs 

and AutoEncoders, have proven effective for tasks 

like segmentation and classification. Innovative 

tools like the BrainNetClass toolkit are also 

emerging, making it easier to construct and 

analyze brain networks. However, challenges 

persist, such as the need for better integration of 

different data types, improved model 

generalizability, and enhanced interpretability. 

Looking ahead, research should aim to create 

unified frameworks that utilize multi-modal 

neuroimaging, focus on explainable AI, and 

improve the scalability of deep learning methods 

in connectome research. As research continues to 

evolve, the application of DL in brain care is 

expected to further enhance our ability to 

diagnose, treat, and manage neurological 

disorders, ultimately leading to better healthcare 

and quality of life for patients. In the future, deep 

learning in brain connectome mapping will likely 

emphasize personalized and multimodal 

approaches to better address brain disorders. By 

integrating structural and functional connectivity, 

we can enhance diagnostics and treatments for 

conditions like epilepsy and brain tumors. 

Advanced neuroimaging techniques, such as T1- 

and T2-weighted MRI and diffusion imaging, will 

improve the accuracy of connectome models. 

Emerging methods, including CNNs and geometric 

CNNs, will streamline analyses by estimating 

connectomic features more directly. Overall, future 

research will focus on integrating diverse data 

sources and developing automated processing 

pipelines to better link neuroimaging with clinical 

applications. 
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