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Abstract 
 

Anywhere on the body might develop melanoma, a very serious form of skin cancer. Early detection of melanoma lesions 
significantly increases the likelihood of effective therapy. In recent times, learning-based segmentation techniques have 
outperformed conventional algorithms in the segmentation of images. This work presents a novel approach to improve 
the identification and classification of skin lesions with cancer. We propose a two-stage procedure based on deep 
learning models. To evaluate our approaches, we used the popular ISIC 2018 dataset, which is well-known for its Skin 
Lesion Analysis Towards Melanoma Detection Challenge. There are two primary parts to the suggested methods for 
segmenting and identifying lesions in real time. First, we use an enhanced version of You Only Look Once edition 8 (F-
YOLOv8) to accurately localise skin lesions. We next use the updated Segmentation Network (F-SegNet) to handle the 
F-YOLOv8 data further. We conducted experiments on 20,250 photos from three publicly available datasets: The 
International Skin Imaging Collaboration (ISIC) 2019, International Symposium on Biomedical Imaging (ISBI) 2017, 
and PH2. The findings were promising. The suggested approach obtained accuracy of 98.50% and 98.50% on the PH2 
and ISBI 2017 datasets, respectively, and a Jac score of 93.22% on the ISIC 2019 dataset. In most situations, our 
technique showed somewhat better performance compared to current efforts in this field utilising predetermined 
parameters. 
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Introduction 

With its fast development and dissemination, skin 

cancer is one of the most common diseases 

detected globally. The unchecked proliferation of 

melanocyte cells is the cause of malignant 

melanoma skin tumours. Because of its greater 

death rate and propensity to spread to 

neighbouring tissues, this kind of melanoma is 

more hazardous than other skin tumours (1). 

There were 11,650 skin cancer-related fatalities in 

the US in 2022 due to 104,450 occurrences of skin 

cancer, including squamous cell and basal cell 

tumours. Melanoma is the primary cause of these 

instances, accounting for 92.5% of cases and 

62.1% of fatalities from skin cancer (2, 3). Early 

skin lesion discovery may significantly lower 

mortality from melanoma. Skin malignancies are 

usually evaluated visually, which often results in 

inaccurate judgements. The most trustworthy 

imaging technique for analysing skin lesions is 

dermoscopy (4, 5). Dermatologists may improve 

the quality of their diagnosis and patient 

assessments by using a reliable, automated 

Computer-Aided Diagnosis (CAD) system. The goal 

of improving diagnostic performance and accuracy 

for melanoma diagnosis is to build an automated 

system for melanoma lesion segmentation (6-9). 

There are two types of automated melanoma 

segmentation techniques: deep learning 

algorithms and classical approaches (10-12). 

Conventional techniques include adaptive 

thresholding, Otsu's thresholding, level set 

segmentation, iterative stochastic area merging, 

and iterative selection threshold (13). These 

methods often suffer from natural or clinical 

artefacts that reduce their efficacy. Although Otsu's 

thresholding works effectively, it often results in 

asymmetric segment boundaries that lower the 

quality of the picture (14-16). The implementation 

of intensity averaging across pixels solved this 

problem. Dermoscopic image-based object 

identification algorithms have been used to 

identify melanoma-affected regions and improve 

segmentation results. For example, researchers 

used superpixel data to map the relevance of 

melanoma spots using a hyper-graph. Deep 

learning algorithms have recently surpassed conv-  
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entional techniques in melanoma segmentation, 

making substantial progress (17).  This work 

suggests an integrated, two-phase diagnostic 

method that accurately identifies and segments 

skin lesions while lowering computational 

expenses by using a Convolutional Neural Network 

(CNN) (18). The primary objective is to increase 

the efficacy of diagnosis by accurately detecting 

and categorising melanoma lesions. There are two 

primary stages to the procedure. First, we identify 

melanoma lesions as target locations in our 

improved You Only Look Once version 8 network 

(F-YOLOv8). We then use these regions as inputs 

into our improved segmentation system (F-

SegNet). With an emphasis on identification and 

segmentation, this work makes use of the PH2, ISBI 

2017 and ISIC 2019   datasets, which comprises 

20,250 photos and matching ground truth masks. 

Deep learning architectures for skin lesion 

diagnosis may benefit from the techniques and 

findings of this study. There is a lot of potential for 

integrating the suggested F-YOLOv8 and F-SegNet-

based melanoma detection technique into clinical 

workflows. It can improve dermatologists' 

diagnostic capabilities by providing a dependable, 

automated solution for lesion localisation and 

segmentation, which lessens the need for manual 

interpretation and increases diagnostic accuracy. 

Effective screening is made possible by the 

system's real-time processing capabilities, which 

may lead to earlier melanoma identification and 

prompter actions. It may also be easily integrated 

into clinical settings, simplifying processes and 

lessening the workload for medical professionals, 

given its interoperability with current imaging 

technologies like dermoscopy and its capacity to 

manage huge datasets. Ultimately, by facilitating 

quicker, more precise diagnoses and 

individualised treatment regimens, this invention 

may enhance patient care. 

The study's main contributions are:  

• Multiple skin lesions associated with 

melanoma may be accurately detected in one 

picture using F-YOLOv8.  

• F-YOLOv8 uses a deep neural network to 

precisely locate lesion regions in pictures.  

We provide a real-time lesion localisation 

technique that smoothly incorporates 

extracted regions into F-SegNet.  

• Using the PH2, ISBI 2017 and ISIC 2019 

datasets for assessment, F-SegNet 

demonstrates accurate melanoma lesion 

segmentation.  

This is the format for the remainder of the paper: 

Details of datasets, segmentation, classification, 

and pre-processing are covered in Section II. 

Section III contrasts the computer-generated 

findings with new methods. An examination of the 

problems brought up and upcoming difficulties 

rounds off Section IV. 
 

Methodology 
This work offers a real-time approach to skin 

lesion segmentation for melanoma. There are two 

primary processes in the process: first, locating the 

lesion in the picture, and second, segmenting the 

lesion according to its geographic characteristics. 

Figure 1 shows the complete process, including 

segmentation and detection of lesions. All of the 

training set's data were scaled to 512 by 512 pixels 

prior to YOLO version 8 training. In order to specify 

the item to be recognised, the bounding box's 

height (h), width (w), and centre coordinates (x, y) 

are added to the picture data during the training 

phase. Using the coordinates of the upper-left (x1, 

y1) and lower-right (x2, y2) corners of the 

bounding box makes it easier to calculate these 

values, as Figure 2 illustrates. 

 

 
Figure 1: Localization and Segmentation of Melanoma Lesions 
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Figure 2: Skin Lesion Labelling For F-Yolov8 Training 

Pre-processing 
Errors and misinterpretations may happen while 

diagnosing malignant melanoma with the unaided 

eye. Dermatoscopy is often considered a more 

dependable option by medical professionals. 

Despite the high cost of dermatoscopy, research 

has made great strides in lowering prices without 

sacrificing picture quality. Although the suggested 

method shows encouraging results in detecting 

melanoma, further research is necessary to fully 

understand its limits when it comes to processing 

photos that include artefacts, lighting fluctuations, 

or a range of skin tones. The model's capacity to 

precisely locate and segment lesions may be 

hampered by images including artefacts like hair, 

shadows, or reflections, which might raise mistake 

rates. Similar to this, changes in illumination 

between datasets or in real-world environments 

may impact picture quality consistency, which may 

result in inaccurate segmentation or 

misclassification. Concerns about the model's 

generalisability in populations with different 

pigmentation are further raised by the fact that its 

performance over a range of skin tones is yet 

poorly understood. This study suggests a 

sophisticated preprocessing method to overcome 

these drawbacks and enhance the calibre of the 

images we were able to get for our investigation. 

Through a region-based identification approach, 

the initial step is cutting off the hair in the lesion 

area. In order to properly finish the process and 

improve the quality of the picture, we employ 

histogram equalisation in the second step. Below is 

a description of the suggested methods. 

Let 𝑋(𝑖, 𝑗) for (𝑖, 𝑗) ∈ A ≡ {1, 2, 3,….., M} ×{1, 2, 3,….., 

N} be the intensity of the pixel at location (𝑖, 𝑗) in a 

corrupted  𝑀 × 𝑁 image X. Simultaneously, a 

binary flag image F of the same size has been 

generated, where 𝑋(𝑖, 𝑗) takes values for all pixels 

(𝑖, 𝑗)  1, =jif . 

A 5× 5 window (W) is created centered on a pixel 

in the image 𝑋 in the image X. 

From this window, we form a set {𝑆} that includes 

all the components of the window. The elements of 

this set are then arranged in increasing order, 

resulting in: 

𝑆 =  { 𝑠1, 𝑠2, 𝑠3, 𝑠4, … … . , 𝑠25} where 𝑠1 ≤  𝑠2 ≤

 𝑠3 ≤  … … ≤  𝑠25 and  𝑖 = 1,2,3,4, … . . ,25 

Four subsets S1, S2, S3, S4 are also formed like 

below. 

𝑆1 =  { 𝑠𝑖 ∶  0 ≤  𝑠𝑖 ≤  64 }         

𝑆2 =  { 𝑠𝑖 ∶  65 ≤  𝑠𝑖 ≤  129 }     

𝑆3 =  { 𝑠𝑖 ∶  130 ≤  𝑠𝑖 ≤  194 }   
𝑆4 =  { 𝑠𝑖 ∶  195 ≤  𝑠𝑖 ≤  255 }   

 

To proceed with calculating 

𝑛(𝑆1), 𝑛(𝑆2), 𝑛(𝑆3), 𝑛(𝑆4) are calculated and 

examining the maximum 𝑛(𝑆𝑖) for 𝑖 =  1,2,3,4 the 

following steps are followed. 

𝑖𝑓  𝑛(𝑆1)𝑖𝑠 𝑀𝑎𝑥 
3
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Therefore, using all of W's components and relying 

on the following equation, the standard deviation 

(σ) is calculated. 
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𝑖𝑓  − px ji ,  𝑡ℎ𝑒𝑛 jix ,

=  𝑢𝑛𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑 𝑝𝑖𝑥𝑒𝑙 𝑒𝑙𝑠𝑒 𝑛𝑜𝑖𝑠𝑦 𝑎𝑛𝑑 𝐹 𝑖𝑠 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑑 𝑏𝑦 

0, =jif .  
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𝑖𝑓 (
jif ,

==  0) 𝑡ℎ𝑒𝑛 
jix ,

=  0 and apply SCMMF 

to remove noise (19). 

Figure 3 highlights the advancements made by 

showing the results of this step-by-step method. By 

putting these preprocessing methods into practice, 

we want to improve the pictures' quality and 

dependability and prepare them better for analysis 

and diagnostic operations down the road. This also 

lessens the need for pricey dermatoscopy 

techniques. 

 

 
Figure 3: Skin Lesion Pre-Processing Method (A) Input Images ISIC_0087243 and ISIC_0097719 

Respectively (B) Grayscale Images (C) Modified Picture 

Using the PH2, ISBI 2017, And ISIC 

2019 Datasets to Train Yolov8 
Training algorithms with the right datasets of 

relevant photos has proven to be a challenging 

undertaking, and skin cancer detection has become 

a major study field in medical imaging. A total of 

20,250 photos of non-melanoma and melanoma 

lesions from three publically available datasets—

PH2, ISBI 2017, and ISIC 2019—were used to train 

the classifier using a holdout dataset. There were 

2,530 pictures of non-melanoma and melanoma 

lesions in the testing data alone. There are 200 

photos in the PH2 dataset, including 40 cases of 

melanoma, 80 atypical nevi, and 80 normal nevi. 

There are 2,000 training photos, 600 testing 

images, and 150 validation images in the ISBI 2017 

dataset. There were 25,331 photos in the initial 

ISIC 2019 collection, of which 4,522 were 

melanoma and 20,809 were not. Table 1 provides 

details about the PH2 and ISBI 2017 datasets, 

while Table 2 outlines the characteristics of the 

ISIC 2019 dataset. We picked all 4,522 melanoma 

photos from the ISIC 2019 dataset and 12,778 non-

melanoma images at random, for a total of 17,300 

images, as we previously have 1,626 non-

melanoma and 374 melanoma images from the 

ISBI 2017 dataset. We divided the small number of 

photos into three categories: 80% for training, 

10% for testing, and 10% for validation. Thus, 

13,840 training pictures, 1,730 testing images, and 

1,730 validation images from the ISIC 2019 dataset 

were used to train the classifier. Table 3 shows the 

distribution of the chosen melanoma and non-

melanoma photos for testing, validation, and 

training among the three datasets. The resolutions 

of these 24-bit RGB dermoscopic pictures range 

from 4499 × 6748 to 540 × 722. 

Table 1: Distribution of PH2 and ISBI 2017 Datasets 

Datasets Training Data Validation Data Test Data Total 

Label M NM M NM M NM  

PH2 * * * * 40 160 200 

ISBI 2017 374 1626 30 120 117 483 2750 

Note: M—melanoma, NM—non-melanoma, * there are no data in this field 
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Table 2: Distribution of ISIC 2019 Datasets 

Label MV M BK BCC SCC VL DF AK Total 

ISIC 2019 12,875 4522 2624 3323 628 253 239 867 25,331 

Note: MV—melanocytic nevus, M—melanoma, BK—benign keratosis, BCC—basal cell carcinoma, SCC—squamous cell 

carcinoma, VL—vascular lesion, DF—dermatofibroma, AK—actinic keratosis 
 

Table 3: Used Datasets in the Proposed Work 

Datasets Training Data Validation Data Test Data Total 

Label M NM M NM M NM  

PH2 * * * * 40 160 200 

ISBI 2017 374 1626 30 120 117 483 2750 

ISIC 2019 3622 10,218 450 1280 450 1280 17,300 

Total 3996 11,844 480 1400 607 1923 20,250 

Note: M—melanoma, NM—non-melanoma, * there are no data in this field 
 

A modified CSPDarknet53 backbone serves as the 

convolutional neural network (CNN) for feature 

extraction in YOLOv8. Cross-stage partial 

connections are a feature of this design that allow 

for improved information flow across layers and 

increase accuracy. By merging feature maps from 

different backbone stages, the network's "neck," or 

feature extractor, enables the model to gather data 

at several sizes. YOLOv8 makes use of a unique C2f 

module in place of a conventional Feature Pyramid 

Network (FPN). This module improves 

identification accuracy, especially for tiny items, by 

integrating low-level spatial features with high-

level semantic information. The ultimate forecasts 

come from the "head" of the network. For each grid 

cell in the feature map, YOLOv8 predicts bounding 

boxes, objectness scores, and class probabilities 

using a variety of detection modules (Figure 4). 

These individual forecasts are then integrated to 

yield the final object detections. 

Using a convolutional neural network, the F-

YOLOv8 approach analyses pictures and predicts 

bounding boxes and related class probabilities. In 

tensor representation, these forecasts have 

dimensions (S × S) * B * (5 + C). After splitting the 

picture into a grid of S × S non-overlapping cells, F-

YOLOv8 processes each one to provide confidence 

ratings and identify bounding box attributes. Its 

confidence score tells us how likely it is that an 

item will be within the projected bounding box. 

The computation involves multiplying the 

probability of an object's presence (Pr(Object)) by 

the intersection over union (IOU) between the 

ground truth and the anticipated bounding box. 

The confidence score of a cell that is empty is 0. In 

the event that an object is present, the IOU—which 

is the ratio of the area that overlaps the actual and 

predicted bounding boxes to the entire area that 

both cover—represents the confidence score. It is 

possible to assess the spatial accuracy of the 

bounding box prediction by computing IOU, which 

is the result of calculating the area of intersection 

(numerator) and the total area of both boxes 

(denominator).  
 

 

 
Figure 4: YOLOv8 Framework 
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Figure 5 shows the locations of skin lesions at three 

different magnification levels. With training from 

the ISIC 2018 dataset, we propose the F-YOLOv8 

architecture (Figure 6) to identify skin lesions 

associated with melanoma. Resize all photos in the 

dataset to a consistent 512 × 512 resolution before 

using them to train the YOLOv8 model, even if their 

starting resolutions may vary. The following 

settings are used in the training procedure: 32 

batch sizes, 0.9 momentum, 0.0005 decay, and 

0.001 learning rate. The process is performed for 

10,000 epochs. 
 

 
Figure 5: F-Yolov8 Reliably Predicted Melanoma. A Bounding Box Containing The Tx, Ty, Tw and Th 

Coordinates Established By The Red Grid Is The Blue Frame. Pi Is the Class of Probability Scores, and P0 is 

the Confidence Score 
 

 
Figure 6: Detection of Melanoma Skin Lesions Using the F-Yolov8 Network 

 

To optimize YOLOv8 for the particular features of 

our dataset and increase its performance in 

melanoma lesion identification, we fine-tuned the 

model's pre-trained weights. In addition, we 

changed the last layer of the YOLOv8 architecture 

to identify and categorise melanoma lesions in the 

output. These improvements were critical for 

customising YOLOv8 to the intricacies of our data 

and boosting its capacity to detect the target 

lesions. Figure 7 shows our tailored deep learning 

pipeline for the target domain. This process of 

modification and improvement guarantees that 

our approach successfully satisfies the particular 

needs of melanoma lesion identification in our 

target area. 
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Figure 7: Shows the Transfer Learning Process Using the Target Domain from the Melanoma Dataset and 

the Source Domain from the Initial Weights 
 

The example picture in Figure 8(A) shows that F-

YOLOv8 has effectively recognised a melanoma 

lesion location. Consequently, the bounding box 

computation procedure is shown graphically in 

Figure 8(B). The portion of the bounding box 

where the lesion is completely contained is 

indicated in Figure 8(C). The last step involves 

getting all of the detected melanoma lesion 

pictures ready for F-SegNet stage input. This 

technique makes sure that the melanoma lesion 

pictures are effectively isolated and ready for the 

next processing stages. Using the datasets, F-

YOLOv8 was trained using pictures reduced to 512 

× 512 pixels and dispersed in accordance with 

Table 5's criteria. A total of 20,250 pictures and the 

related ground truth annotations were used in the 

training procedure. When tested on the datasets, 

the 53 convolutional layers and 55 million 

parameters that make up the F-YOLOv8 

architecture produced the following outcomes. 

The parameter count is obtained by multiplying a 

filter's width and height by the number of filters in 

the previous layer, adding one, and then 

multiplying this total by the number of filters in the 

current layer. The assessment showed that the 

detection speed was 45 frames per second and the 

average accuracy was 99%. 

 

 

Figure 8: The Suggested F-Yolov8 is Making Progress in Extracting a Melanoma Lesion from a Clinical 

Picture. (A) Insert Pictures (B) Confidence and Boundary Boxes (C) Final Identification 
 

F-Segnet for Melanoma Segmentation 
For additional training, F-YOLOv8 processes 

images from the PH2, ISBI2017 and ISIC 2019 

datasets before feeding them into F-SegNet. Figure 

9 shows the configuration of the modified SegNet 

architecture that is used for melanoma 

identification in the training. Because of this 

modification, the SegNet model is able to efficiently 

complete segmentation tasks that are intended to 

locate melanoma lesions in the pictures. The last 

step in our procedure is to use the photos 

produced by the F-YOLOv8 process to train the F-

SegNet algorithm. With regard to the SegNet 

model, we especially used pictures of tiny 

melanoma tumours to refine it. For this kind of 

learning and training, the symmetrical encoder-

decoder structure of the SegNet architecture 

makes it extremely suitable, especially in 

situations involving complicated picture 

processing. The SegNet model's decoder network 

converts the low-resolution output into pixel-level 

predictions for the target class by using 

upsampling layers. 
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Figure 9: The Input Picture and Segmented Result Melanoma Type in F-Segnet Layers 

 

Subsequent processing uses a low-resolution 

representation that the encoder network 

concurrently generates in addition to the initial 

high-resolution input. With its symmetrical 

encoder-decoder design, the SegNet model is 

especially well-suited to the problem of accurate 

melanoma lesion segmentation, which is the 

subject of this study. For optimal performance, the 

proposed classifier's hyperparameters include a 

learning rate of 0.045, a decay rate of 0.5, an 

epsilon value of 1.0, and a batch size of 32, with a 

subdivision of 16. The categorisation results are 

kept at the 50th epoch and are created throughout 

5000 epochs. We experimented with adjustments 

to the SegNet model throughout the segmentation 

phase of our learning-based method. In particular, 

we presented a loss function that includes Median 

Frequency Balancing (MFB). Although the original 

training for F-SegNet (our modified SegNet) used 

cross-entropy loss, we included MFB in this loss 

function by using a particular formula, which we 

will discuss later. 

                                         K(θ) =

−
1

n
[∑ ∅x(i)[xi log x̂i + (1 − xi)n

i=1 log(1 − x̂i)] ] 

       [2] 

This novel function boosts performance by 

weighting the average ratio of class frequencies by 

the melanoma class and putting it into the loss 

function, where 𝑥(𝑖) represents the real label, m 

indicates the total number of labeled pixels, and 

x̂𝑖  symbolises the predicted output. Across the 

training dataset, this weighting approach is used, 

using class frequencies to differentiate across 

classes. Figure 10 shows our suggested model's 

chronological outputs. Crucially, our model 

performs very well on the unknown test dataset, 

proving its greater generalisation capacity and 

resilience. The observed discrepancy between the 

expected production before and after fine-tuning is 

a crucial finding. 
 

 
Figure 10: Chronological Progress of the Proposed Model (A) Original Image (B) Location Detection (C) 

Ground Truth Image (D) Predicted Segmentation Output (Before Fine-Tune The Model) (E) Final Output 
 

Results and Discussion 
This section provides a comprehensive analysis of 

the performance of the proposed approach. All 

testing were conducted on a computer with a Core-

i7 CPU and 32 GB of RAM, and the recommended 

methodology was put into practice. The acquired 

images were analysed and categorised using the 

OpenCV framework and the Python programming 

language. Among the several criteria considered at 

different classification stages were the evaluation 

of the classification model, segmentation analysis, 

lesion localisation performance analysis, and skin 

refinement efficiency. To comprehend their 

possible ramifications in a clinical setting, the 

research would benefit from a thorough 
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examination of the many mistake kinds produced 

by the suggested model, such as false positives and 

false negatives. False positive results may cause 

patients needless worry and need further 

diagnostic testing, which would put more strain on 

healthcare systems. False negatives, on the other 

hand, can cause melanoma to go undetected, 

postponing necessary treatment and perhaps 

worsening patient outcomes. We used the PH2, 

ISBI 2017, ISIC 2018, and ISIC 2019 publically 

available datasets to assess the efficacy of the 

proposed methodology.  Accurate localisation is 

necessary for the subsequent, more complex 

segmentation. The effectiveness of localisation is 

assessed using the Intersection over Union (IoU) 

criterion, a widely used computer vision metric. A 

lesion is considered accurately localised if it’s IoU 

score is more than 80%.  

                                    
 Unionof Area

Overlap of Area
=IOU                         [3] 

                                              
FNTP
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+
=                                   [4] 
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++


=
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2
                    [6] 
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++
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+++

+
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Additionally, the object localisation model is 

assessed using Mean Average Precision (mAP), 

which compares predicted bounding boxes to 

ground truth and gives higher scores to detections 

that are more trustworthy. These indicators are 

computed using exact formulae to assess the 

suggested method with rigour. Three metrics—

sensitivity, specificity, and IOU (Intersection over 

Union) to precisely identify lesions—were used to 

assess the recognition performance. During the 

detection phase, the PH2 dataset produced an IOU 

of 95, a sensitivity of 97.5%, and a specificity of 

98.5%. Using the ISBI 2017 dataset, the suggested 

method obtained an IOU of 92, a sensitivity of 

98.47%, and a specificity of 97.51%. The results for 

the ISIC 2019 dataset were 90 for IOU, 97.77% for 

sensitivity, and 97.65% for specificity. Figure 11 

shows the detailed output that the suggested 

model produced. The segmentation performance 

of our method was assessed on two datasets based 

on accuracy, sensitivity, specificity, Jac, and Dic 

metrics once the lesion site was determined. We 

used datasets from PH2, ISBI 2017, and ISIC 2019 

to compare our work to many well-established 

techniques in medical imaging segmentation, 

which has seen significant progress. Our suggested 

segmentation approach performed better than 

several deep-learning and conventional 

segmentation frameworks. It outperformed the 

majority of approaches with the exception of one, 

achieving high sensitivity, specificity, Jac, and Dice 

scores for the PH2 dataset. With remarkable 

accuracy and Jac scores, it outperformed everyone 

on the ISBI 2017 dataset, including the best ISIC 

2017 Challenge participants. Based on datasets 

from PH2 and ISBI 2017, respectively, Tables 4 and 

5 compare the previously indicated segmentation 

techniques. Table 6 shows the segmentation 

performance results of our suggested approach on 

a subset of the ISIC 2019 dataset. Figure 12 

displays the segmentation analysis together with 

the True Positive (TP) and True Negative (TN) 

values. 
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Figure 11: (A) ISIC_0014800, ISIC_0034813, ISIC_0061442, and ISIC_0599605 Input Pictures, (B) Pre-

Processing Results, (C) Yolov8 Localisation, and (D) Segmentation Results 
 

 

 
Figure 12: Segmentation Analysis Together With the True TP and True Negative TN Values 

 

Table 4: PH2 Dataset Comparison of the Suggested Segmentation Performance (%) 

References Acc Sen Spe Jac Dic 

 (2) 97.50 97.50 97.50 88.64 93.97 

 (20) 98.70 92.90 96.90 - - 

 (21) 96.50 96.70 94.60 89.40 94.20 

 (22) 92.99 83.63 94.02 79.54 88.13 

 (23) 94.24 94.89 93.98 83.99 90.66 
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 (24) 95.03 96.23 94.52 85.90 92.10 

Proposed Method 98.50 97.50 98.75 92.86 96.30 
 

Table 5: ISBI 2017 Dataset Comparison of the Suggested Segmentation Performance (%) 

References Acc Sen Spe Jac Dic 

 (2) 97.33 91.45 98.76 86.99 93.04 

 (20) 95.30 87.50 85.50 - - 

 (22) 93.39 90.82 92.68 74.81 84.26 

 (24) 95.06 86.05 95.95 79.15 88.95 

 (25) 81.57 75.67 80.62 - - 

 (26) 93.60 81.60 98.30 78.20 87.80 

 (27) 93.20 82.00 97.80 76.20 84.70 

Proposed Method 98.50 97.44 98.76 92.68 96.20 
 

Table 6: ISIC 2019 Dataset Comparison of the Suggested Segmentation Performance (%) 

References Acc Sen Spe Jac Dic 

 (2) 97.33 91.45 98.76 86.99 93.04 

 (28) 97.86 97.56 97.97 92.23 95.96 

Proposed Method 98.15 97.78 98.28 93.22 96.49 
 

We evaluated the suggested recognition results 

with those of other classifiers, including Tree, SVM, 

KNN, and YOLOv8. We used You Only Look Once 

(YOLO) to compare our suggested approach with 

current deep-learning models by setting various 

parameters. Sensitivity, specificity, precision, 

accuracy, and AUC were the basis for the 

comparison, and time (in seconds) was also used 

as a statistic to confirm how quickly our strategy 

worked. These similarities are shown for photos 

from the PH2, ISBI 2017, and ISIC 2019 datasets in 

Tables 7, 8 and 9 respectively. 
 

Table 7: Comparison of the Suggested Classifier with Popular Classifiers Using the PH2 Dataset 

Classifier Method Acc (%) Sen (%) Spec (%) Prec AUC 

TREE CT 98.26 96.11 98.99 96.98 97.55 

ST 98.18 96.71 98.68 96.13 97.69 

SVM LSVM 97.95 96.71 98.38 95.28 97.54 

CSVM 98.41 96.11 99.19 97.57 97.65 

QSVM 98.18 96.41 98.78 96.41 97.60 

MGSVM 98.26 97.31 98.58 95.87 97.94 

KNN FKNN 98.64 96.41 99.39 98.17 97.90 

MKNN 98.41 96.11 99.19 97.57 97.65 

Cosine 97.88 96.41 98.38 95.27 97.39 

Cubic 98.33 95.81 99.19 97.56 97.50 

WKNN 98.26 97.01 98.68 96.14 97.84 

YOLO Proposed Method 99.24 98.20 99.59 98.80 98.90 
 

Table 8: Comparison of the Suggested Classifier with Popular Classifiers Using the ISBI 2017 Dataset 

Classifier Method Acc (%) Sen (%) Spec (%) Prec AUC 

TREE CT 93.83 92.39 94.54 89.22 93.46 

ST 94.83 93.91 95.29 90.69 94.60 

SVM LSVM 96.17 96.45 96.03 92.23 96.24 

CSVM 96.00 95.94 96.03 92.20 95.98 

QSVM 95.33 92.89 96.53 92.89 94.71 

MGSVM 95.00 91.37 96.77 93.26 94.07 

KNN FKNN 95.83 93.91 96.77 93.43 95.34 

MKNN 93.83 91.88 94.79 89.60 93.33 

Cosine 94.17 93.40 94.54 89.32 93.97 

Cubic 94.67 95.43 94.29 89.10 94.86 
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WKNN 95.00 95.43 94.79 89.95 95.11 

YOLO Proposed Method 99.17 99.49 99.01 98.00 99.25 

 

Table 9: Comparison of the Suggested Classifier with Popular Classifiers Using the ISIC 2019 Dataset 

Classifier Method Acc (%) Sen (%) Spec (%) Prec AUC 

TREE CT 89.32 93.65 87.21 78.15 89.32 

ST 95.31 98.41 93.80 88.57 95.31 

SVM LSVM 91.67 96.03 89.53 81.76 91.67 

CSVM 88.28 93.65 85.66 76.13 88.28 

QSVM 92.71 96.03 91.09 84.03 92.71 

MGSVM 94.01 96.83 92.64 86.52 94.01 

KNN FKNN 92.71 96.83 90.70 83.56 92.71 

MKNN 90.10 93.65 88.37 79.73 90.10 

Cosine 94.01 96.03 93.02 87.05 94.01 

Cubic 94.01 94.44 93.80 88.15 94.01 

WKNN 88.80 96.03 85.27 76.10 88.80 

YOLO Proposed Method 98.44 98.41 98.45 96.88 98.44 
 

Selecting YOLO as a classifier improves the 

effectiveness of skin lesion detection while cutting 

down on detection time. Preprocessing models, 

which automatically remove hair before applying 

picture enhancement and appropriate 

segmentation techniques, have helped to increase 

the accuracy of the suggested approach. 
 

Conclusion 
This research provides a unique F-YOLOv8 and F-

SegNet model-based method for melanoma skin 

lesion identification and segmentation. To set our 

method apart from previous deep learning-based 

segmentation techniques, we use a two-step 

process: first, we localise the skin lesions and then 

we segment the areas that we have discovered. 

Although this approach requires more processing 

steps, it lessens the impact of the model including 

unnecessary picture regions. Tested on the PH2, 

ISIC 2017 and ISIC 2019 datasets, our approaches 

outperform state-of-the-art models in terms of 

detection and segmentation performance. It is 

possible to modify the suggested approach to 

handle other medical image analysis jobs, such as 

segmenting and detecting MRI images. In order to 

improve the model's robustness and clinical 

reliability, this study may also help guide ideas for 

further data incorporation or pre-processing 

method improvement. Future prospects for study 

include exploiting current improvements in the 

discipline to incorporate more advanced 

approaches within both phases. 
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