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Abstract 
India produces 20 million metric tons of tomatoes annually, with 150,000 metric tons being exported to international 
markets. India ranks as the leading producer and exporter of tomatoes globally, and tomato farming has a significant 
contribution to India's agricultural economy, with millions of farmers relying on tomato farming for their livelihood. 
Tomatoes are in high demand during the summer, but cultivating them at this time of year is challenging because the 
hot climate increases the susceptibility to numerous diseases. In this study, we collected 5250 images of tomato leaves 
suffering from seven distinct diseases. We identified regions of interest, such as leaves, using the YOLOv8 framework 
for object detection and passed these to the ResNet-50 model for classification.  Using classification assessment metrics, 
the effectiveness of this framework was evaluated and compared with other deep learning architectures, such as CNN, 
AlexNet, VGG-19, and EfficientNetV2B7. We provide optimal treatment recommendations based on disease 
identification using a comprehensive disease treatment dataset, along with detailed explanations through GPT-3.5. The 
results demonstrate that YOLOv8 performs well in precise and real-time recognition of objects, making it extremely 
efficient for detecting regions of interest such as tomato leaves, while ResNet-50's deep architecture boosts disease 
classification accuracy by effectively distinguishing between various tomato diseases based on extracted features. 
Together, they form a powerful framework for accurate tomato disease prediction. 
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Introduction
Approximately 15% of India's GDP is derived from 

agriculture, which also provides livelihoods for 

150 million farmers nationwide. Among various 

crops, tomatoes are a notable agricultural product, 

with India being one of the largest producers and 

exporters globally. The economic significance of 

tomatoes has been highlighted by India's recent 

tomato production, which reached beyond 20 

million metric tons, of which 150,000 metric tons 

were exported to other countries. Tomatoes are in 

high demand during the summer, but extreme 

temperatures vary from 35°C to 50°C, making it 

challenging for the crops to thrive (1). These harsh 

conditions increase the risk of infections from 

various diseases. If the diseases are not discovered 

and treated promptly, the affected crops weaken, 

struggle to recover, and may eventually die. Early  

detection and intervention are crucial to 

preventing the spread of diseases and ensuring 

crop survival during these difficult conditions (2). 

The description for principal diseases that damage 

tomato crops is given below: 

Tomato Yellow Leaf Curl Virus (TYLCV) 
The TYLCV-affected tomato plants exhibit small 

leaves that become yellow, particularly between 

the veins, with the leaves curling towards the 

center of the leaf. The virus is spread by silverleaf 

whiteflies, from infected to healthy plants. Infected 

seedlings display stunted growth, giving them a 

bushy appearance. In mature plants, only new 

growth after infection is reduced in size. Although 

the virus hampers tomato production, the fruit 

itself often remains visually unaffected despite the 

plant's overall decline in health (3). 
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Septoria Leaf Spot 
One of the most damaging diseases of tomato 

leaves is Septoria leaf spot, caused by a fungus, 

Septoria lycopersici. It is especially severe in places 

where there is prolonged, humid weather. The 

spots on the leaves are circular in shape and 

approximately 0.06 to 0.25 inches in diameter. 

They have dark brown edges with tan to gray 

centers, often containing small black fruiting 

structures. The disease ascends from the oldest to 

the youngest growth. The leaves get somewhat 

yellow, then brown, and finally wither if there are 

several leaf lesions.  

Tomato Mosaic Virus (ToMV) 
It is a plant pathogenic virus that damages 

tomatoes or many other plants worldwide, and it is 

a member of the family Tobamoviridae and of the 

genus Tobamovirus. The leaves of infected plants 

may have mottled or mosaic patterns of light and 

dark green. In addition, the leaves could stoop, 

distort, or develop blisters. Fruit size reduction, 

deformed appearance, and slowed growth are 

other effects of the virus (4).  

Tomato Bacterial Spot 
It is caused by Xanthomonas bacteria and appears 

on the leaves as tiny, rounded patches, often less 

than 0.125 inches in diameter, which may appear 

water-soaked or wet and can seriously harm 

tomato crops. Fruits with lesions may become 

unmarketable. 

Tomato Late Blight 
Potatoes and tomatoes are susceptible to the 

damaging fungal disease known as tomato late 

blight, which is brought on by Phytophthora 

infestans and spreads rapidly by wind and rain and 

flourishes in cool, damp environments. As the 

disease progresses, leaves, stems, and fruits 

develop sporadic, water-soaked lesions that 

eventually turn brown and dry. Large, black, 

greasy patches appear on infected fruit, 

significantly reducing yield.  

Tomato Early Blight 
Alternaria solani, a common fungal pathogen that 

causes tomato early blight, primarily impacts 

leaves, stems, and fruits. On older leaves, the initial 

symptoms develop as tiny, brown to black lesions 

that are frequently encircled by a yellow halo. The 

spots enlarge and form concentric rings that 

resemble a bullseye pattern as the condition 

worsens (5). Although the warm, humid weather is 

frequently good for growing tomatoes, it also 

encourages the growth of bacterial, viral, and 

fungal diseases. Early disease detection on 

tomatoes is essential, as small, immediate 

treatments can frequently result in a full recovery 

if they are detected early. Treating a seriously 

infected plant, however, may not be effective 

because it is more likely to die, and the disease may 

spread to nearby crops. Taking early intervention 

reduces the possibility of losing a significant 

amount of the harvest and helps in stopping its 

propagation (6). Farmers have different obstacles 

in managing tomato infections that severely affect 

crop yield and quality. 

● Accurate identification frequently requires 

specific knowledge and skills that not all 

producers possess, especially in remote or 

resource-constrained areas. 

● Many diseases exhibit similar symptoms, 

making it challenging to differentiate between 

them just by visual inspection (7).  

● Since some infections spread quickly within or 

between fields, early detection and accurate 

diagnosis are crucial to managing these 

conditions. 

● In order to properly manage and rid a crop 

disease, farmers must be aware of the proper 

remedies after it has been detected. If the 

disease is not properly treated, it may spread 

and get worse, causing more harm to the crop 

and possibly a loss of production (8). 

This research offers an innovative approach for the 

identification, management, and clarification of 

tomato diseases, empowering farmers to act 

quickly before a disease outbreak. We have 

gathered pictures of tomato plants suffering six 

serious diseases. Leaf extraction is done with 

YOLOv8, while disease categorization is done with 

ResNet-50. For disorders that have been 

discovered, GPT-3.5 offers thorough explanations 

and recommended courses of action. Our approach 

performs better in disease prediction and 

treatment suggestion when compared to CNN, 

AlexNet, VGG-19, and EfficientNetV2B7, applying 

measures like classification accuracy, 

loss/accuracy curves, and confusion matrices. The 

enhanced speed, accuracy, and real-time detection 

capabilities of YOLOv8's sophisticated architecture 

allow it to perform better in object detection. 

Accurate leaf extraction is ensured by its efficient 

handling of complex environments and smaller 
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items, such as tomato crop leaves. However, due to 

its deep residual learning methodology, which 

enables it to recognize complex patterns from the 

retrieved leaf data, ResNet-50 performs extremely 

well in the categorization of diseases. Compared to 

more conventional models like AlexNet or VGG-19, 

it is more accurate because of its deeper layers, 

which provide better representation of disease 

features. A significant problem in agriculture is 

crop disease, especially when it comes to 

identifying issues with plant leaves. The 

international economy depends heavily on 

agriculture, and India is the world's second-largest 

producer of tomatoes. Diseases, however, 

significantly decrease tomato yield and quality. 

Technological developments in computer vision 

and deep learning offer potential for proficient 

crop disease forecasting, facilitating prompt 

treatments to enhance the production of 

agriculture. The TomConv model (9), based on an 

improved Convolutional Neural Network (CNN), 

divides tomato leaves into ten categories. The 

research employs 16,000 images from the 

PlantVillage dataset, including both healthy and 

diseased photographs. A four-layer CNN with max 

pooling was trained on the dataset images, which 

were transformed to 150x150 pixels resolution 

and partitioned into an 80:20 ratio for training and 

validation. The results demonstrate that the model 

delivers 98.19% accuracy over 105 epochs. The 

machine learning techniques (10), such as CNN, 

fuzzy-SVM, and R-CNN, are examined for the 

identification of diseases in tomato plant leaves. 

The dataset of 735 images comprises healthy 

samples as well as a variety of diseases used to test 

the performance of classifiers. To increase 

accuracy, the images were compressed to 256 by 

256 pixels and turned into grayscale. With an 

accuracy of 96.74%, the R-CNN-based model was 

the most effective of all the tested classifiers. R-

CNN uses a two-step method: it finds sick areas 

first, and then it categorizes the objects within each 

region. Mexico's agricultural sector covers 2.5 

percent of its GDP, and tomatoes have become the 

country's largest exported agricultural product. 

Using a publicly available dataset and additional 

images captured in Mexican fields, the researcher 

(11) suggests a CNN-based model for identifying 

and categorizing tomato leaf diseases. The public 

dataset consists of up to 11,000 images and 2,500 

photos collected from various Mexican agriculture 

fields. Generative Adversarial Networks (GANs) 

are used for data augmentation, producing 

synthetic samples that share the same attributes as 

the training distribution. The input for the network 

consists of 112 × 112 color images that have been 

normalized to (0, 1) values. Filters with values of 

16, 32, 64, and 128 were used in the four 

convolutional layers of the proposed neural 

network. The kernel size was set to a value of 3 × 3, 

and the rectified linear unit (ReLU) was used as the 

activation function for each convolved node. 

According to the findings, the classification of leaf 

diseases had a training accuracy of 99.99% and a 

validation accuracy of 99.64%. The corresponding 

disease is accurately classified by the model with 

an F1 score, precision, and recall of 0.99. Farmers 

frequently find it challenging to contact experts in 

remote regions to take advice on preventive 

actions against unusual diseases, and physically 

identifying tomato diseases by closely examining 

the plants is a time-consuming and challenging 

task. The enhanced CNN model proposed (12) in 

this work contained an input layer accepting 128 × 

128 size of image, two convolution layers with 

filter size 3 × 3 and strides of 1, two max pooling 

layers, a hidden layer, and a flattening followed by 

an output layer. The performance of the proposed 

approach was evaluated against transfer learning 

models such as Inceptionv3, ResNet152, and 

VGG19. The results demonstrate that the 

suggested model outperforms other models with a 

training accuracy of 98% and a testing accuracy of 

88.17%. The hybrid CNN-RNN model (13) is 

designed to identify tomato plant illnesses, where 

several pre-trained CNN models are used for 

feature extraction. The next stage is combining the 

liquid time-constant networks (LTC) model with 

the refined CNN model. To enable the LTC model to 

capture sequential relationships between the CNN 

model's output features, they are concatenated 

into a sequential format before being fed. The 

model's performance will be optimized by 

hyperparameter tuning, which will investigate 

variations in parameters such as batch sizes, 

learning rates, and the number of RNN units. To 

evaluate accuracy, computational cost, and 

training time, different model combinations are 

investigated. The study aims to create lightweight 

architectures that work in contexts with limited 

resources. For the automatic classification of ten 

varieties of tomato leaves, seven effective 
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Bayesian-optimized deep hybrid learning models 

that leverage the synergistic advantages of 

machine learning and deep learning were 

proposed (14). The study used CNN for automatic 

feature extraction and conventional machine 

learning techniques for classification, including RF, 

XGB, GNB, SVM, KNN, MLR, and stacking. The data 

augmentation performed for nine classes using the 

ImageDataGenerator and Boruta feature filtering 

layer has been implemented on the PlantVillage 

dataset in order to extract the statistically 

significant features. The Bayesian optimization 

technique was employed to optimize the DL 

model’s hyperparameters. The result 

demonstrates that the CNN-Stacking model 

produced the highest classification performance 

among the seven hybrid models, and for an 

unknown dataset, this model attained accuracy 

values of 98.268%, which needs only 0.174 

seconds of testing time. Instead of relying on 

expensive expert analysis, the suggested (15) deep 

learning-based framework to recognize tomato 

plant diseases by examining pictures of tomato 

leaves will assist farmers in classifying diseases 

impacting tomato-growing crops by simply taking 

an image of infected leaves. Conditional-GAN is 

utilized for image augmentation, offering synthetic 

images for training purposes, and the DenseNet 

model was trained on photos of tomato plants and 

tomato synthetic images in order to detect tomato 

illness. For 5, 7, and 10 disease class classification 

tasks, the proposed model's accuracy on the 

original PlantVillage dataset is 98.16%, 95.08%, 

and 94.34%, respectively, and when using the 

original PlantVillage + synthetic images dataset, 

the accuracy is 99.51%, 98.65%, and 97.11%. In 

the world of agriculture, deep learning is crucial for 

addressing the problem of plant disease 

identification, as it requires an extensive amount of 

effort, a thorough understanding of different plant 

illnesses, and more processing time to detect 

diseases in plants. Based on transformer 

aggregation, the researcher (16) presented an 

innovative approach to forecast crop pathology on 

a global-local feature space. The minority classes 

are augmented, so the effects of class imbalances 

are mitigated, and the dataset is normalized once it 

has been augmented to make it appropriate for the 

model's input. Training and disease classification 

were conducted using the Plant Village dataset and 

the VietNam strawberry disease dataset. A multi-

level CNN model with ten layers builds the 

architecture where the first convolutional layer 

has 64 filters with a 3×3 kernel size and accepts an 

image input shape of 256×256×3. The fourth, 

sixth-, and eighth-layer output channels are 

designated as the local features, where the global 

feature is the dropout layer's output. Multiple 

evaluations demonstrate that the proposed 

strategy performs well in Plant Village and VNStr 

by 99.18% and 94.05%, respectively. 
 

Methodology 
After visiting various fields, we constructed tomato 

disease datasets for six primary diseases. The 

Yolov8 has been trained on annotated pictures of 

tomato leaves in order to extract leaves. 

Preprocessing techniques like resizing, 

normalization, and augmentation have been 

applied to the retrieved image. The preprocessed 

images are fed to ResNet-50 training after being 

divided into sets for training and validation. The 

extracted leaf from the live-captured image was 

categorized by the trained model. The user is given 

treatment recommendations, disease descriptions, 

their effects, etc., as illustrated in Figure 1. 
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Figure 1: Architecture for Tomato Disease Detection Using YOLOv8, ResNet-50, and GPT-3.5 

Dataset 
The dataset contains 5250 pictures for seven 

categories, including six diseased and one healthy 

category, which were gathered from publicly 

available agricultural databases, research 

repositories, and different tomato plant 

agricultural fields. To ensure consistency, the 

photographs were taken in both controlled and 

natural lighting conditions, using regular cameras. 

The dataset captures variations in the quality of 

images, such as resolution, background clutter, leaf 

angles, and lighting conditions, to guarantee that 

the model is robustly trained and evaluated under 

multiple scenarios. Figure 2 demonstrates the type 

of disease and how it affects tomato leaves. We 

have created and annotated a separate leaf dataset 

containing plant pictures to enable the Yolo 

algorithm to extract leaves from a given plant 

image.
 

 
Figure 2: Tomato Leaf Dataset Representing All Disease Categories 
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Initial Preprocessing 
Variations in leaf structure, lighting circumstances, 

and overlapping symptoms among diseases make 

it challenging to generalize the model to different 

tomato varieties, growing conditions, and disease 

severity levels. To solve this, the model needs 

broad, high-quality datasets encompassing an 

extensive range of varieties and environmental 

conditions, as well as data augmentation 

approaches to boost robustness. To make sure that 

the input data is in a format and quality 

appropriate for training and inference, image 

preprocessing is an essential phase before feeding 

images into deep learning models. Image 

augmentation is performed to increase the size and 

diversity of the dataset before employing models 

to improve the model's performance, which helps 

the model be more resilient and recognize patterns 

in various conditions, leading to better 

generalization (17). As most deep learning models 

require a defined input image size (for example, 

ResNet-50 requires 224x224x3, or AlexNet 

requires 227x227x3), all images are resized in 

order to satisfy the specifications. Normalization 

helps scale pixel values, which usually range from 

0 to 255, to a smaller range (generally between 0 

and 1), which improves training stability and 

improves convergence by preventing the model 

from dealing with large variance in pixel values 

(18). 

Leaf Extraction 
With processing an image in a single pass through 

a neural network that divides the image into a grid 

and predicts bounding boxes and class 

probabilities directly from the image in a single 

forward pass, the YOLO (You Only Look Once) 

architecture was designed for real-time object 

recognition. The YOLOv8 nano model is a 

lightweight form of YOLOv8 that is well suited for 

applications that have limited processing 

resources while retaining high accuracy. The three 

primary parts of Yolo architecture are the 

backbone, primarily responsible for feature 

extraction; the head, which carries out bounding 

box regression and object categorization; and the 

neck, which aggregates features at various scales 

(19). 

Backbone (Feature Extraction): These layers 

extract essential features like edges, textures, and 

more intricate patterns from the input image by 

using convolution techniques. A modified 

CSPDarknet, an optimized Darknet, using Cross 

Stage Partial (CSP) networks, serves as the 

foundation for YOLOv8 that helps to decrease the 

burden on computing while maintaining 

significant spatial and contextual information (20). 

Let X∈ RHxWx3 stand for the input image, where H 

stands for height, W for width, and 3 for the RGB 

color channels. A number of feature maps are 

calculated by the backbone are as below (21):  

𝐹 = 𝐵𝑎𝑐𝑘𝑏𝑜𝑛𝑒(𝑋) ∈  𝑅𝐻′𝑋 𝑊′𝑋 𝐶                         [1] 

Where F is the feature map, C is the number of 

feature channels, and H′ and 𝑊’ are the reduced 

spatial dimensions generated by the convolution 

and pooling layers. Residual blocks are employed 

in the latest versions of YOLOv8 to enhance 

gradient flow and enable deeper networks that 

enable the network to learn an identity mapping, 

which guarantees that crucial information is 

preserved across layers (22). The residual block is 

expressed as follows: 

𝑦 = 𝐹(𝑥) + 𝑥                                                            [2] 

where x is the block's input and F(x) is the 

transformation, the block applies, usually 

convolution and activation. In order to reduce 

computation while preserving accuracy, YOLOv8 

employs CSPNet, which divides the feature map 

into two parts, processes one, and then combines it 

with the unprocessed piece (23). 

Neck (Multi-scale Feature Aggregation): In order 

to detect objects at various scales, the neck is 

constructed to gather and integrate feature maps 

across multiple backbone layers, as it is essential 

for both large and small item detection. The feature 

pyramid networks combine data from several 

backbone layers to extract high-level and low-level 

information. High-level features record significant 

contextual information, while low-level features 

assist in the detection of small objects. Path 

Aggregation Network (PANet) is used to guarantee 

efficient feature aggregation and enhance 

information flow between layers. 

Head (Detection and Prediction): Within each 

bounding box, the Yolo head classifies the object 

and predicts the bounding box coordinates. The 

YOLOv8 employs an anchor-free technique, which 

implies that box coordinates, abjectness scores, 

and class probabilities are predicted directly 

rather than using predefined anchor boxes (24). 

Below is a representation of each object's 

bounding box prediction:  
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𝑥̂ = 𝜎(𝑥𝑔) + 𝑐𝑥 𝑎𝑛𝑑  Ŷ =  𝜎(𝑦𝑔) + 𝑐𝑦              [3] 

YOLOv8 uses the center coordinates (x, y), width 𝑤, 

and height ℎ to estimate bounding boxes. From 

grid cell coordinates, these values are forecasted as 

offsets. The coordinates of the grid cell are (𝑐𝑥, 𝑐𝑦), 

and the predicted offsets, σ(xg) and 𝜎(𝑦𝑔), are 

normalized using the sigmoid function.  

With the use of a sigmoid activation function, 

YOLOv8 predicts an abjectness score Pobj for 

every grid cell, indicating whether or not the grid 

cell includes an object (25). 

𝑃𝑜𝑏𝑗 =  𝜎(𝑜𝑔)                                                             [4] 

Where og represents raw score for the grid cell. 

A softmax or sigmoid function is used to calculate 

the class probabilities (Pclass,i) for each grid cell, 

depending on whether the task is multi-class or 

multi-label classification. 

𝑃𝑐𝑙𝑎𝑠𝑠,𝑖 =
𝑒𝑐𝑖

∑    
  𝑗𝑒

𝑐𝑗
                                                        [5] 

Where for class i, the ci represent the raw class 

score and the sum is taken over all classes. 

Disease Classification 
The ResNet-50 is a deep CNN type of residual 

network family with 50 layers distinguished by its 

creative use of residual connections, also referred 

to as skip connections. Convolutional and identity 

blocks are the primary structural components of 

ResNet-50, allowing the model to maintain 

accuracy as the network grows in depth. 

Convolution layer: A CNN's fundamental 

component, the convolutional layer, is mainly used 

for feature extraction from images by applying a 

set of filters, or kernels, to the input data (26). 

These filters move across the image or other input 

to find patterns like edges, textures, shapes, and 

higher-level features. The basic function of a 

convolutional layer can be summarized as follows 

(27):  

𝑦𝑖,𝑗,𝑘 = ∑  

𝑀

𝑚=1

∑  

𝑁

𝑛=1

∑  

𝐶

𝑐=1

𝑥𝑖+𝑚,𝑗+𝑛,𝑐. 𝑤𝑚,𝑛,𝑐,𝑘

+ 𝑏𝑘                   [6] 

Where the bias term for the kth filter is represented 

by bk. This summation covers M×N spatial 

dimensions and all C input channels. From the cth 

input channel, the xi,j,c represents the input at place 

[i, j]. For the kth filter, yi,j,k represents the output at 

place [i, j] and wm,n,c,k represent the weight for the 

kth filter at position [m, n] for channel c. 

Residual Learning: The vanishing gradient 

problem, in which gradients are incredibly small as 

they are backpropagated through numerous 

layers, is one of the primary issues with extremely 

deep networks, which results in slower updates 

and can lead to a network that is unable to perform 

learning. Instead of learning the entire mapping, 

ResNet introduced the concept of residual 

learning, which enables the model to learn 

residuals, that is, the difference between the input 

and the intended output. 

The residual function F(x) is calculated by passing 

the input x through a sequence of convolutional 

layers in a residual block. The residual function 

and the initial input x are then added to determine 

the output of the residual block (28). 

𝑦 = 𝐹(𝑥, {𝑊𝑖}) + 𝑥                                                [7] 

The F(x,{Wi}) stands for the learned residual 

function, which is parameterized by the 

convolutional layers' weights w’ and the identity 

mapping, x, gets added to the output directly. 

Batch Normalization: By normalizing the inputs 

to each layer such that they have a mean of zero 

and a standard deviation of one, batch 

normalization (BN), an essential strategy in deep 

neural networks, reduces the issue of internal 

covariate shift and stabilizes and speeds up 

training. The batch normalization layer estimates 

the mean and variance of the activations for each 

feature in a mini-batch represented as below (29). 

𝑀𝑒𝑎𝑛 (𝜇𝐵) =
1

𝑚
 ∑  

𝑚

𝑖=1

𝑥𝑖                                           [8] 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝜎𝐵
2) =

1

𝑚
 ∑  

𝑚

𝑖=1

(𝑥𝑖 − 𝜇𝐵)2                    [9] 

where m is the number of samples in the mini-

batch and 𝑥 is the activation value for the ith input. 

The calculated mean and variance are then used to 

normalize each activation x. 

𝑋̂ =
𝑥𝑖 −  𝜇𝛽

√𝜎𝛽
2  +  𝜖 

                                                       [10] 

Where μβ and σ_β^2 are the mean and variance of 

the batch. To avoid division by zero, a small 

constant ϵ gets added. 

Activation Function: ResNet-50 adds non-linearity 

to the network by using ReLU activation after each 

convolutional layer and batch normalization step, 

as it is necessary for the network to be able to 
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model complicated relationships between inputs 

and outputs, as explained below (30). 

𝑅𝑒𝐿𝑈 𝑓(𝑥) = (0, 𝑥)                                     [11] 

Global Average Pooling: It generates a single 

scalar value for each feature map by calculating the 

average value of each feature map across its spatial 

dimensions, i.e., height and width. 

𝑦𝑐 =
1

𝐻 × 𝑊
 ∑  

𝐻

𝑖=1

∑  

𝑊

𝑗=1

𝑥𝑖,𝑗,𝑐                                   [12] 

where xijc is the value at location (i,j) in the cth 

feature map, yc is the output for the cth channel, and 

H and W are the feature map's height and width 

(31). 

Treatment Recommendation 
The disease that was diagnosed was included in 

the query that was sent to GPT-3.5, along with 

requests for suitable agricultural remedies, disease 

specifications, consequences, etc. A variation of 

OpenAI's (32) Generative Pre-trained Transformer 

(GPT) series, GPT-3.5 Turbo was created especially 

to provide high-performance natural language 

creation and interpretation at a lower computing 

cost than its predecessors. In comparison to the 

more powerful GPT-4, the speed-optimized GPT-

3.5 Turbo responds more quickly without 

compromising accuracy. The large corpus of 

heterogeneous text material used to train GPT-3.5 

Turbo encompasses a wide range of subjects and 

includes books, scholarly articles, websites, and 

other publicly accessible text sources. The average 

response time for the majority of queries is 

between one and two seconds (33). 

Performance Evaluation 
We used several standard metrics that are 

frequently used in classification tasks, including 

accuracy, precision, recall, and F1-score, to 

evaluate the performance of our proposed 

approach based on the test dataset, which consists 

of tomato plant images representing various 

diseases. The most basic measure is accuracy, 

which shows the percentage of successfully 

predicted instances among all forecasts made (34). 

Precision estimates the percentage of predicted 

positive cases that resulted in actual positive (35). 

The model's recall, also referred to as sensitivity, 

and assesses its capacity to identify each true 

positive instance. The F1-Score is calculated by 

taking the harmonic mean of recall and precision 

(36). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

=
[𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒]

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
      [13] 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

=
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

[𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒]
      [14] 

𝑅𝑒𝑐𝑎𝑙𝑙

=
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

[𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒]
          [15] 

𝐹1𝑆𝑐𝑜𝑟𝑒

= 2 ∗
[𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙]

[𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙]
                          [16] 

 

Results and Discussion 
Using Google Colab, a cloud-based platform that 

offers an integrated environment for executing 

Python code, including deep learning models, 

evaluations for tomato leaf disease prediction have 

been carried out. A NVIDIA Tesla T4 GPU was used 

in this study to speed up the evaluation and 

training procedures. The enormous computational 

power and parallel processing capabilities of the 

T4 GPU, which has 16 GB of GDDR6 memory, make 

it an excellent choice for deep learning operations. 

These features also significantly reduce the 

amount of time required to perform model training 

when compared to CPU-based systems. For seven 

classes, including diseased and healthy, we 

gathered 5950 photographs of tomato-infected 

leaves. These were split into two sets: a training set 

with 4550 images and a validation set with 1400 

images. Yolo8 was trained on a dataset with 

annotated leaves, which was used to extract leaves 

from pictures of tomato plants and carried out 

basic preprocessing like normalization, resizing, 

and augmentation. The photos were scaled to 640 

× 640 pixels, with a learning rate of 0.001, and the 

Adam optimizer was employed for steady 

convergence. A batch size of 16 was chosen, and 

the model was trained for 50 epochs, with early 

stopping used to prevent over fitting. The VGG-19, 

AlexNet, EfficientNet, and ResNet-50 are examples 

of high-performing deep learning models that have 

been trained to evaluate their performance on 

disease classification tasks. We used the Adam 

optimizer with the categorical cross entropy loss 

function to train deep learning algorithms on the 

tomato disease dataset, and we monitored the 

model's performance using the accuracy metric. 

The verbosity level was set to 1, and the model was 
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trained over 10 epochs with 65 steps per epoch. 

We incorporated callback functions such as 

learning rate scheduling (LR), early stopping (ES), 

and model check pointing (MC) to improve the 

training process. Figure 3 illustrates the 

performance of different models by visualizing the 

training and validation accuracy, loss, and number 

of epochs for each model. 
 

 

 

 

A) CNN Training and Validation Performance 

 

 

 

B) AlexNet Training and Validation Performance 

 

 

 

C) VGG-19 Training and Validation Performance 
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D) EfficientNetV2B7 Training and Validation Performance 

 

 

 
E) ResNet-50 Training and Validation Performance  

Figure 3: Training and Validation Performance of the Different Models 

We captured 140 photos in total, 20 for each 

category, and employed assessment measures to 

evaluate each model's performance. Table 1 shows 

the comparative performance of models based on 

accuracy, precision, recall, and F1-score.  The 

confusion matrix is especially beneficial for 

highlighting areas where the model is likely to 

make incorrect classifications. The confusion 

matrix, demonstrating both correct and incorrect 

classifications for each category by each model, is 

presented in Table 2.

 

Table 1: Comparative Performance of Models Based on Accuracy, Precision, Recall, and F1-Score 

Model        Accuracy        Precision        Recall          F1-Score 

CNN 0.6286 0.6681 0.6286 0.6289 

Alexnet 0.7286 0.7489 0.7286 0.7333 

VGG-19 0.8429 0.8528 0.8429 0.8434 

EfficientNetV2B7 0.9429 0.9489 0.9429 0.9407 

ResNet50 0.9714 0.9727 0.9714 0.9714 
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Table 2: Confusion Matrix for Test Dataset 

T

r

u

e 

L

a

b

e

l 

Bacterial 

Spot 
16 2 0 2 0 0 0 18 0 0 1 1 0 0 16 2 0 0 0 1 1 20 0 0 0 0 0 0 20 0 0 0 0 0 0 

Early 

Blight 
3 15 0 2 0 0 0 0 19 1 0 0 0 0 1 14 2 3 0 0 0 1 14 0 3 0 2 0 0 18 0 0 1 0 1 

Late 

Blight 
0 1 9 1 2 7 0 0 2 11 0 0 0 7 0 4 15 0 0 1 0 0 0 20 0 0 0 0 0 2 18 0 0 0 0 

Septoria 

Leaf Spot 
3 0 2 11 3 0 1 2 3 5 10 0 0 0 0 1 0 19 0 0 0 2 0 0 18 0 0 0 0 0 0 20 0 0 0 

Yellow 

Leaf Curl 

Virus 

4 4 0 2 8 0 2 0 0 0 3 14 3 0 0 2 0 0 18 0 0 0 0 0 0 20 0 0 0 0 0 0 20 0 0 

Mosaic 

Virus 
0 2 3 0 1 14 0 0 0 2 2 0 16 0 1 0 0 1 0 17 1 0 0 0 0 0 20 0 0 0 0 0 0 20 0 

Healthy 0 2 3 0 1 0 14 0 1 3 0 0 2 14 0 0 0 1 0 0 19 0 0 0 0 0 0 20 0 0 0 0 0 0 20 
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CNN 

AlexNet VGG-19 EfficientNetV2

B7 

ResNet-50 

Predicted Label 

 

According to the findings, ResNet-50 performs 

superior in training and validation in terms of 

accuracy and loss over CNN, AlexNet, VGG-19, and 

EfficientNetV2B7. Compared to the other models, 

ResNet-50 performs better and converges more 

smoothly and consistently, as seen by the training 

and validation accuracy vs. epoch and loss vs. 

epoch charts. This is particularly noticeable when 

the model is employed on leaves that have been 

extracted with the YOLO object detection 

framework, which improves classification 

accuracy by processing only the most essential 

area of the plant. The loss vs. epoch graph 

additionally demonstrates that ResNet-50 is more 

robust in interpreting unknown data, as it 

minimizes training and validation loss more 

effectively. The stronger performance of ResNet-

50 during testing is further confirmed by the 

comparative performance table and confusion 

matrix table, which demonstrate that it 

consistently produces outstanding precision, 

recall, and F1-scores. ResNet-50 performed better 

on YOLO-extracted leaves as it was able to use 

residual learning, allowing the model to learn from 

high-quality, refined input data. ResNet-50 

performed better on YOLO-extracted leaves as it 

was able to use residual learning, allowing the 

model to learn from high-quality, refined input 

data. GPT-3.5 was integrated into the system as a 

backend service that generates suggestions for 

treatment. The integration was carried out by 

using API calls offered by OpenAI's GPT-3.5 

framework. Once the ResNet-50 model categorized 

the tomato crop disease, the label was fed into the 

GPT-3.5 model as an input. A structured prompt 

was developed to assist the model to generate 

precise, accurate, and feasible suggestions. For 

example, the prompt comprised a description of 

the circumstance, an in-depth discussion of its 

signs and symptoms, and a request for suggestions 

for treatment. The proposed platform is 

appropriate for real-time field deployment, 

employing YOLOv8 for rapid leaf extraction and 

ResNet-50 for diagnosis on edge devices such as 

the NVIDIA Jetson. Treatment suggestions have 

been developed using GPT-3.5 through a cloud-

based API, ensuring speedy responses; however, 

offline alternative options can be explored for 

isolated places. The integration of drones with IoT 

devices may boost large-scale surveillance and 

customized suggestions. 
 

Conclusion 
With the objective of ensuring the correct 

classification, we used the YOLOv8 model to 

efficiently extract leaves from a dataset of 5250 
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tomato plant pictures covering seven disease 

classifications, which allowed us to isolate the 

most significant parts of the plant. A number of 

deep learning models, including CNN, VGG-19, 

AlexNet, EfficientNet, and ResNet-50, were then 

trained using the extracted leaf pictures as input. 

Among them, ResNet-50 outperformed the other 

models by a significant amount and delivered 

better training, validation, and testing results. 

Following classification, GPT-3.5 was used to 

further process the identified problems in order to 

provide comprehensive treatment 

recommendations, disease clarifications, and 

insights into the distinctive features of the disease 

and its possible complications. ResNet was able to 

successfully handle complicated features in the 

leaf pictures due to its robust design and residual 

learning. With integrating AI technologies, an 

extensive framework for diagnosing and treating 

diseases was developed, boosting its accuracy and 

usefulness in practical situations. Overall, the 

framework revealed exceptional efficiency, with 

ResNet-50 performing excellently in disease 

classification and YOLOv8 ensuring precise leaf 

extraction. In addition to enhancing model 

performance, this combination reduced errors that 

are frequently identified in noisy input data. 

Future research will concentrate on improving the 

model's generalizability across different kinds of 

plants, incorporating real-time disease monitoring, 

and expanding the dataset to include additional 

disease categories. Furthermore, future research 

into advanced algorithms like Vision Transformers 

(ViTs) may produce categorization results that are 

even more precise. Furthermore, utilizing more 

advanced GPT models to enhance the treatment 

recommendation system may offer farmers and 

agricultural workers even more customized and 

helpful insights. Creating a user-friendly interface, 

such as a mobile app, can allow a farmer to connect 

with the system more efficiently that allows 

farmers to input leaf pictures, get real-time disease 

detection findings, and view treatment 

recommendations in their native language. The 

integration of offline capabilities and voice help 

can improve accessibility in remote areas. 
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