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Abstract 
Computed tomography (CT) is used to visualize body structures and diagnose anomalies, making it an important tool 
in medical diagnosis and therapy planning. However, imaging techniques such as CT, MRI, ultrasound (US), and PET 
are frequently hampered by numerous types of noise, including Gaussian, speckle, Poisson variability, and salt-and-
pepper disturbances. These noises are created by technological interference, image processing flaws, and patient 
movement, which reduce image clarity and conceal key diagnostic details. The major difficulty in medical imaging is 
to remove noise while retaining important diagnostic information. Traditional denoising algorithms, such as Gaussian, 
median, and Wiener filters, frequently fail to adequately control complicated noise patterns or preserve small image 
details, limiting their utility in medical applications. This study presents an advanced unsupervised blind image 
denoising strategy that use an integrated model to treat numerous noise types without requiring paired noisy and 
clean images. The suggested method uses a deep and dense generative adversarial network (DD-GAN) with a new loss 
function to efficiently reduce noise and degradation at various intensity levels. This method advances CT image 
denoising by tackling issues such as intra-class variability, artefact importance, and training complexity, hence 
enhancing diagnostic reliability and accuracy. 

Keywords: Computed Tomography (CT), Deep Dense Generative Adversarial Network (DD-GAN), Deep Learning, 

Denoising, Gaussian Noise, Salt-Pepper Noise. 
 

Introduction 
Healthcare imaging encompasses various types, 

each susceptible to different forms of noise. The 

primary challenge in this field lies in producing 

images that preserve all critical information 

without any loss. Noise and artifacts introduced 

during image acquisition and processing can 

distort the visual quality, limiting their 

effectiveness for diagnosis and treatment. Unlike 

natural images, medical images often exhibit 

signal-dependent noise, which reduces the 

efficacy of conventional denoising techniques. 

Noise introduces random fluctuations in 

brightness and color, diminishing image 

sharpness and potentially rendering them 

unsuitable for medical use. These distortions can 

obscure structural details, making it difficult to 

identify abnormalities and complicating 

diagnostic and therapeutic decisions. Additionally, 

blurry and noisy images hinder the ability to 

extract precise information, posing significant 

challenges for accurate medical evaluation and 

care (1). Positron Emission Tomography (PET) 

employs nuclear imaging to visualize the 

functionality of tissues and organs, but its images 

often suffer from low signal quality and edge 

distortions caused by Poisson and Gaussian noise. 

Similarly, CT images are affected by Gaussian and 

salt-and-pepper noise, which arise from factors 

such as electrical interference, image processing 

errors, and reconstruction inaccuracies (2). 

Ultrasound imaging utilizes high-frequency sound 

waves to generate real-time images of physical 

structures. While it is a safe and non-invasive 

technique, ultrasound images are often 

compromised by speckle noise. This noise 

obscures critical details and reduces the contrast 

of soft tissues, ultimately diminishing the overall 

visual quality (3). Computed tomography (CT) is a 

widely used imaging technique in healthcare, 

enabling precise visualization of body structures 

and abnormalities. Medical imaging has 

revolutionized the field by aiding in disease 

diagnosis, treatment planning, and risk prediction 

(4). However, modalities such as MRI, ultrasound, 

PET, and CT are often affected by various types of 

noise, including Gaussian, speckle, Poisson   
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variability, and salt-and-pepper disturbances. 

These noise artifacts can obscure critical features 

such as edges, lines, and points, reducing the 

clarity and diagnostic value of the images (5). The 

key challenges in reducing noise from CT images 

include maintaining uniformity in uniform areas, 

preserving the sharpness of edges and 

boundaries, retaining overall contrast, ensuring 

texture details remain intact, and avoiding the 

introduction of new artifacts during the denoising 

process (6). Gaussian noise, for example, 

originates from sensor malfunctions, heat, or 

electronic interference, leading to random 

variations in pixel intensity that degrades image 

clarity and detail. In CT images, noise can be 

caused by factors such as photon statistics, 

electronic interference, and patient movement, 

which can distort fine details and diminish image 

quality, resulting in a loss of valuable information 

(7). The primary objective of denoising is to 

eliminate noise while preserving key features, 

such as edges. Effective denoising techniques 

enhance image restoration and improve the 

extraction of features in complex imaging 

methods like MRI, PET, and CT. Various noise 

reduction methods exist, including Gaussian, 

mean, median, BLT, Wiener, NLM, and denoising 

convolutional neural networks (DnCNN) (8). 

Though these conventional methods often 

struggle with maintaining image details, handling 

composite noise, parameter fine-tuning, artifacts, 

and computing demands, this limits its application 

in medical diagnostics. For example, an 

amalgamation of dual-tree discrete wavelet 

transform and Wiener filters has efficiently 

filtered out images affected by additive white 

Gaussian noise. To eliminate the degradation, a 

multi-level thresholding method is implemented. 

Developing a comprehensive solution for CT 

image cleaning has numerous challenges, 

including the following:   

● Traditional approaches based on 

discriminative models can't be applied since 

there aren't any noisy/clean pairs available.  

● CT images include a wide array of artefacts 

that have varied degrees of significance (intra-

class variance).  

● Rather of using separate models that were 

trained individually for each kind of noise, we 

decided to use a single strategy to handle all 

noise/degradation problems. This method is 

called blind denoising/restoration.  

Due to the complexities of training several 

models, it is difficult to appropriately route a 

given artefact to the model that should be used to 

clean up the image. This study addresses these 

issues by presenting a comprehensive 

unsupervised picture blind denoising approach. 

This method does not require paired noisy/clean 

images; rather, it employs a single unified model 

to eliminate various types of noise. The most 

significant contributions are as follows:   

● This research introduces a novel framework 

for CT image denoising that effectively 

removes diverse noise types (e.g., Gaussian, 

salt-and-pepper). 

● The core of this framework leverages a robust 

deep learning architecture, specifically a deep 

and dense Generative Adversarial Network 

(GAN). 

● A customized loss function was developed and 

integrated to optimize the GAN's performance 

in removing noise from CT images. 

● The proposed framework effectively addresses 

the challenge of handling CT images with 

varying levels of noise and artifacts, 

showcasing its adaptability to diverse image 

conditions. 

To maintain structure while suppressing noise, a 

correlation-based wavelet packet thresholding 

approach was presented by Diwakar for the 

denoising of CT images (9). In this work, one 

image with uncorrelated noise is denoised using a 

nonlocal means filter, while the second image is 

subjected to wavelet packet thresholding. 

Gaussian noise poses a significant challenge in 

digital image processing. In the study by Yuan et 

al., an edge-preserving median filter algorithm 

was introduced to address both impulse and 

Gaussian noise in CT images (10). To tackle mixed 

noise, the sparse, non-local regularization method 

was employed, incorporating coding by weight. 

The effectiveness of the denoising process was 

assessed using the peak signal-to-noise ratio 

(PSNR) and structural similarity index (SSIM). 

However, the use of a median filter for Gaussian 

noise reduction was not ideal due to its discrete 

nature, which resulted in satisfactory edge 

preservation but also led to some loss of image 

detail. In the study conducted by Kim et al., 

Gaussian noise with a standard deviation of 0.002 

was added to thoracic CT images to assess the 
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performance of various denoising techniques 

(11). A fast non-local means (FNLM) denoising 

method was utilized to address the blurring 

introduced by the noise. The results showed that 

the FNLM algorithm surpassed conventional 

methods, such as Gaussian, Wiener, and median 

filters, in both efficiency and maintaining image 

quality. The combination of the Fast Guided Filter 

and dual-tree complex wavelet transform has 

been studied, demonstrating enhanced 

effectiveness in removing Gaussian noise 

compared to traditional methods (12). 

Nevertheless, challenges such as blurring and 

diminished contrast remain unresolved. When 

acquiring or transmitting data across any network 

or medium, two frequent forms of noise that 

appear in healthcare images are Gaussian noise 

and salt and pepper noise (13–15). Bioinspired 

optimization bilateral filter and CNN were 

proposed to minimize Gaussian noise from CT 

medical images was proposed (16). Modern 

denoising approaches have looked into enhancing 

BM3D to reduce noise in CT images using a 

context-based approach. This improvement 

increased the average quality score by about 30% 

over the original BM3D, as evaluated by Contrast 

to Noise (17). Numerous studies have investigated 

the use of CNNs for denoising. One strategy 

involved training a generator within a Generative 

Adversarial Network (GAN), which was guided by 

a discriminator, to increase denoising 

performance on 3D cardiac CT images. This 

method improved the PSNR by four points (18). 

Recent approaches, such as wavelet thresholding 

and deep CNNs, enhanced noise reduction but 

resulted in detail loss. To address these issues, 

Abuya et al., proposed an ensemble technique that 

combines anisotropic Gaussian filters, wavelet 

transforms, and a deep learning denoising CNN 

(DnCNN) (19). The method starts with AGF and 

Haar wavelet transforms to preprocess and 

decrease noise, followed by DnCNN for additional 

noise removal. Evaluation measures like as PSNR, 

MSE, and SSIM proved the efficiency of this 

method. The method produced an average PSNR 

of 28.28 and excellent SSIM values, indicating 

greater image quality and detail retention when 

compared to competing techniques. Filters that 

prioritise detail preservation, on the other hand, 

may be unable to effectively reduce noise, making 

images difficult to understand. To do this, we 

present an ensemble technique that utilises the 

Daubechies wavelet transform and the Generative 

Adviseral Network. The suggested ensemble 

method increases denoising performance by 

integrating the advantages of each strategy, 

resulting in successful noise suppression while 

maintaining image quality. 
 

Methodology 
The traditional architecture of the General GAN 

consists of two modules: the Generator and the 

Discriminator (20). The generator receives and 

processes input data that consists of random 

noise. As part of the estimating procedure, the 

generator's weight and bias are both randomly 

determined. The 2D data is then fed into the 

Discriminator to be validated. Following that, the 

discriminator determines if the image has been 

improved or is noisy. The discriminator must be 

trained on both the denoised and noisy image 

datasets simultaneously. The output is then sent 

back to the generator, where it can be utilised to 

change the weight and bias settings. After the 

signal is generated, it is passed to the 

discriminator to be categorised. To train the 

discriminator, both denoised and noisy image 

data are utilised. Furthermore, it maintains its 

weight and bias based on the most recent data for 

categorisation purposes. After that, the 

Discriminator properly identified both the 

denoised and noisy image datasets. The 

Daubechies wavelet transform was employed to 

breakdown the original image. The size and 

wavelet function of the Daubechies are as follows 

(21, 22): 

 

𝛼𝑖 =  ℎ0𝑠2𝑖 + ℎ1𝑠2𝑖+1 +  ℎ2𝑠2𝑖+2 + ℎ3𝑠2𝑖+3 

𝛼[𝑖] =  ℎ0𝑠[2𝑖] +  ℎ1𝑠[2𝑖 + 1] + ℎ2𝑠[2𝑖 + 2] + ℎ3𝑠[2𝑖 + 3]                                              [1] 

𝐶𝑖 =  𝑔0𝑠2𝑖 +  𝑔1𝑠2𝑖+1 + 𝑔2𝑠2𝑖+2 +  𝑔3𝑠2𝑖+3 

𝐶[𝑖] =  𝑔0𝑠[2𝑖] +  𝑔1𝑠[2𝑖 + 1] + 𝑔2𝑠[2𝑖 + 2] +  𝑔3𝑠[2𝑖 + 3]                                              [2] 
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Proposed DD GAN 
This section explains the proposed Inception-

based GAN (IDGAN) network for denoising. Let, I 

(𝑛) = [𝐼1, … . , 𝐼𝑛] is 2D image, where, 𝐼𝑏1 = {𝐼1, … . . 

𝐼10} is the count of the sample. We extend the 

basic GAN architecture by introducing a new loss 

function, which is our primary contribution to the 

field.  
 

 

Figure 1: Inception Module 
 

The Inception module within the Generator 

employs parallel convolutional layers with filter 

sizes of 1x1, 3x3, and 5x5, allowing it to capture 

features at multiple scales as shown in Figure 1. 

This architecture enables the model to identify 

both detailed and broader patterns, which is 

crucial for managing the diverse noise 

characteristics in CT images. By merging these 

extracted features, the module improves the 

Generator’s ability to retain important edges and 

textures while effectively reducing noise. This 

multi-scale feature extraction strategy supports 

the GAN’s objective of reducing perceptual loss 

and enhancing image quality, as reflected in 

higher PSNR and SSIM metrics.  This image, in the 

form of approximated wavelet coefficients, serves 

as a starting point for GAN processing. The 

Generator (𝑒𝑏|𝑧, 𝜃𝐷) predicts the template from 

random Gaussian noise p(eb|YW). The estimated 

template is W is having similar coefficient to 

original image template Y. This process 

necessitates several loops. If the error is smaller 

than the threshold value in each iteration, the 

current image is used as the final template. The 

discriminator ((𝑐), 𝑒𝑏1,) classifies the image as 

noisy or denoised i.e. Class 𝑒𝑏 and another (𝑐). 

This conventional GAN is binary, having just two 

classes. Simply said, 𝐺 and 𝐷 are two-player 

versions of a min-max game with a value function 

(𝐺, 𝐷). The generator and discriminator's ideal 

parameter by optimizing the function's value (𝐺, 

𝐷) is given as, 
 

𝑚𝑖𝑛

𝐺

𝑚𝑎𝑥

𝐷
 𝑉(𝐷, 𝐺) =  𝐸𝑥∼𝑃𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔 𝑙𝑜𝑔 𝐷(𝑥) ] +  𝐸𝑧∼𝑃𝑑𝑎𝑡𝑎(𝑧)[𝑙𝑜𝑔 𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧)))) ]                      [3] 

 

The discriminator (𝐷) has seven levels whereas 

the generator (𝐺) has only six in the layer-wise 

design. Three convolutional layers comprise the 

generator, each with a single activation (The 

LeakyReLU and final tanh activation). The 

discriminator is constructed from two 

LeakyReLU-activated convolutional layers and a 

fully-connected softMax layer at the very end. 

Further, a dense layer is applied. For Dropout 

layers, we maintain a 0.3% dropout rate. As a 

result, the negative effects of over-fitting will be 

mitigated. The Figure 2 illustrates the application 

of a Deep Dense GAN model, transforming noisy 

input CT images into enhanced, denoised outputs.  
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Figure 2: Proposed DD-GAN Based Denoising Scheme 

 

The input to the first layer, the Conv layer, is a 

DWT-based, 2-dimensional tensor called a 

template. 𝑋= [𝑥1, 𝑥2, …], Here, k is the index 

position of the template sample. Max-Min 

Normalization is performed to the [0, 1] range to 

enhance the efficiency and effectiveness of the 

system's operation.  

𝑋 =  [
𝑥 − 𝑚𝑖𝑛

− 𝑚𝑖𝑛 
] 

In the aforementioned equation, the min-max 

term signifies the smallest value and the max term 

denotes the greatest value for each channel. 

Following this stage, the data is rearranged in 

readiness for future processes. The Conv layer 

receives the modified information. 

For the ith element of the l layer of convolution, 

the output jth feature map is: 

𝑥𝑖
𝑙,𝑗

=  𝜎 [𝑏𝑗 + ∑  

𝑚

𝑎=1

𝑤𝑎
𝑗
𝑥𝑖+𝑎−1

𝑙−1,𝑗
] 

Where, m denotes kernel size, bj, 𝑤𝑎𝑗 is bias weight 

term for jth feature of filter index (ath) 

respectively. σ indicates an activation function. 

The below Table 1 and 2 provide layer-wise 

information about generator and discriminator 

components. 

 

Table 1: Layer Structure of Generator Component 

Layer Generator Component 

0 Random Noise Input 

1 Dense Layer 

2 Reshape 

3 Convolutional Layer (64 filters) 

4 2D Up Sampling 

5 Convolutional Layer (32 filters) 

6 Convolutional Layer (1 filter) 
 

Table 2: Layer Structure of Discriminator Component 

Layer Discriminator Component 

0 2D Wavelet Coefficient Input 

1 Convolutional Layer (64 filters) 

2 Dropout 

3 Convolutional Layer (64 filters) 

4 Dropout 

5 Inception Module 

6 Dense layer 

7 Fully- Connected Layer 

 



Lokhande and Jaware,                                                                                                                                    Vol 6 ǀ Issue 1 

872  

Criteria for Training 

The sum of the two cross-entropy functions H is utilized to meet the training criteria, 

𝐿𝑜𝑠𝑠 (𝐷) = 𝐻(𝑟𝑒𝑎𝑙𝑒𝑏 , 1) + 𝐻(𝑒𝑏1, 0) 

= [−1 × 𝑙𝑜𝑔𝐷(𝑟𝑒𝑎𝑙𝑒𝑏) − (1 − 1) 𝑙𝑜𝑔 𝑙𝑜𝑔 (1 − 𝐷(𝑒𝑏𝑟𝑒𝑎𝑙)) ] + 

[−0 ×𝑙𝑜𝑔 𝑙𝑜𝑔 𝐷(𝑒𝑏𝑔) − (1 − 0) 𝑙𝑜𝑔 𝑙𝑜𝑔 (1 − 𝐷(𝑒𝑏𝑔))  ] 

=  − 𝑙𝑜𝑔 𝑙𝑜𝑔 𝐷(𝑒𝑏𝑟𝑒𝑎𝑙) − 𝑙𝑜𝑔 (1 − 𝐷(𝑒𝑏𝑔)  

Where 𝑒𝑏𝑔~ (𝑒𝑏) is 𝑒𝑏𝑟𝑒𝑎𝑙 is an individual class and 

𝑒𝑏𝑔 is a remaining class template irrespective of 

the original class. An additional criterion is the 

system's total execution time across altogether 

convolution layers. 

𝑂 =  (∑  

𝑑

𝑙=1

𝑛𝑙−1 ∙ 𝑠1
2 ∙ 𝑛1 ∙ 𝑚1

2) 

 

In this context, the convolutional layer index is 

labeled as 1, with the layer number represented 

by 𝑑. At layer 𝑙, the total number of filters used is 

𝑛. The filter's spatial size is denoted by s, and the 

spatial size of the output feature map is indicated 

by m. The time required for fully connected and 

pooling layers accounts for 5-10% of the total 

computational time and is not included in the 

composition described above. Hyper parameter 

tuning was carried out using a combination of grid 

search and manual adjustments to determine the 

optimal settings for the model. The primary hyper 

parameters included a learning rate set at 0.001, a 

batch size of 32, and a dropout rate of 30%. The 

Adam optimizer was selected due to its 

effectiveness and flexibility in training deep 

neural networks. Initial trials revealed that 

learning rates above 0.001 caused instability 

during training, whereas lower rates resulted in 

significantly slower convergence. A batch size of 

32 was chosen as it offered a good balance 

between computational efficiency and model 

accuracy, with larger batch sizes reducing 

variance but demanding more memory. These 

configurations were confirmed to be effective 

through improvements in PSNR and SSIM metrics, 

which showed a 2-3% enhancement compared to 

less optimal settings. 
 

Results and Discussion 
Dataset 

The LIDC Lung Cancer Dataset was used to 

evaluate our hybrid model for image denoising 

(23). We used 1686 pictures of the ten patients 

from the LIDC dataset. The spatial resolution of 

each image is 512 X 512 pixels. We scaled the 

photos to 128 X 128 pixels for training and 

validation. For training, 80% (1349) of the photos 

were used, whereas 20% (337) were used for 

testing. An organized methodology was used to 

systematically analyse denoising performance and 

interpret for potential differences. The image was 

enhanced with a Gaussian blur of various 

intensity ranging from 5% to 30%. The testing of 

the denoising approach for this wide range of 

noise levels is adequate. The standard noise 

deviation (𝜎) is set at 0.1. 

 

 

Figure 3: (A) Original Images (23) (B)-(G) Noisy Images 5% to 30%, and (H) Denoised Images 
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Qualitative Analysis 
The qualitative analysis was conducted by visually 

comparing the denoised image to the original 

noisy version. This evaluation highlighted 

significant noise reduction and effective 

preservation of details, as the denoised image 

appeared smoother, cleaner, and exhibited fewer 

visual artifacts. The structure and patterns in the 

denoised image closely mirrored those of the 

original, reflecting the effectiveness of the 

denoising process. To further assess the retention 

of fine details, intensity profiles—one-

dimensional graphs showing pixel intensity 

variations along a specific line or region—were 

analyzed. Comparing these profiles between the 

denoised and original images confirmed that 

critical features and edges were effectively 

maintained in the denoised output. Figure 3 

illustrates this qualitative analysis applied to the 

denoising of CT images. 

Quantitative Analysis 
Subjective analysis was employed to evaluate the 

proposed approach. Key performance metrics, 

including Peak Signal-to-Noise Ratio (PSNR), 

Structural Similarity Index Measure (SSIM), 

Signal-to-Noise Ratio (SNR), and Mean Squared 

Error (MSE), were utilized to quantify the results. 

By leveraging PSNR, SSIM, and MSE as critical 

indicators, the method was compared against 

some of the most effective denoising algorithms, 

as detailed below. The peak signal-to-noise ratio 

(PSNR) is the ratio of the signal's maximum power 

to the power of the corrupted signal. PSNR is 

commonly expressed in dB scale using mean 

squared error (MSE) as follows. 

MSE (I, K) =  
1

𝑚×𝑛
∑  𝑚

𝑖=1 ∑  𝑛
𝑗=1 [𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)]2 

Here m, n: height, width of an image, I(i, j): 

Original image pixel grey level at (i, j), K(i, j): 

Denoised image pixel grey level at (i, j) 

PSNR = 10 ×  𝑙𝑜𝑔10 (
𝑀𝑎𝑥2

𝑀𝑆𝐸
) 

Where Max = Maximum Intensity value of pixel 

The Structural Similarity Index Measure (SSIM) 

offers an objective method for assessing image 

quality by considering factors such as luminance, 

contrast, and structural details. The SSIM value is 

computed between two windows, x1 and x2, each 

of size K×K, and is applied to various windows 

throughout the image for a comprehensive 

evaluation. 

𝑆𝑆𝐼𝑀(𝑥1, 𝑥2) =  
(2𝜇𝑥1𝜇𝑥2 + 𝑢1)(2𝜎𝑥1𝑥2 + 𝑢2)

(𝜇𝑥1
2 + 𝜇𝑥2

2 + 𝑢1)(𝜎𝑥1
2 + 𝜎𝑥2

2 + 𝑢2)
 

 

Where 𝜇𝑥1, 𝜇𝑥2 is the means, 𝜎𝑥1
2 , 𝜎𝑥2

2  is the 

variances and 𝜎𝑥1𝑥2 is the covariance, 

𝑢1 =  (𝑙1. 𝐷)2 and 𝑢2 =  (𝑙2. 𝐷)2 and D is a 

dynamic range of pixel 𝑙1 = 0.01 and 𝑙2 = 0.03. 

The proposed loss function was developed to 

address the shortcomings of conventional loss 

functions like MSE, which often produce overly 

smooth results and fail to preserve structural 

details. This new loss function integrates 

adversarial loss, perceptual loss, and a structural 

similarity component to effectively reduce noise 

while maintaining fine details. Adversarial loss 

ensures that the generator creates outputs that 

closely resemble real images, while perceptual 

loss, derived from feature maps of a pre-trained 

network, focuses on preserving the perceptual 

quality of the denoised image relative to the 

original. The structural similarity term further 

enhances the retention of edges and intricate 

details. When compared with traditional loss 

functions such as MSE and binary cross-entropy, 

the proposed loss function demonstrated notable 

improvements, achieving a 3.2% increase in PSNR 

and a 4.1% increase in SSIM, as outlined in Table 

3 and 5. These results confirm its capability to 

strike a balance between effective noise 

suppression and detail preservation. 

Quantitative Results 
The effectiveness and performance of the 

proposed method were evaluated by comparing 

CT images processed with various widely used 

denoising filters, including mean, median, 

Gaussian, Wiener, non-local means, and discrete 

wavelet transform (DWT), to reduce additive 

Gaussian blur noise. This evaluation utilized 

metrics such as Mean Squared Error (MSE), 

Structural Similarity Index Measure (SSIM), and 

Peak Signal-to-Noise Ratio (PSNR). Furthermore, 

the proposed method was compared with these 

standard filters across noise levels ranging from 

5% to 30%, using CT images labelled NI1, NI2, 

NI3, NI4, NI5, and NI6. Table 3 to 6 present a 

detailed comparison of the proposed approach 

and other filtering methods in terms of PSNR, 
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SNR, and SSIM for varying intensities of additive 

Gaussian blur noise. Similarly, Figures 4–7 

illustrate the performance of established 

techniques alongside the proposed method for 

denoising Gaussian blur noise. 

Table 3: Comparison of PSNR for the Proposed Method 

 Gaussian Blur Noise at Different Intensities (%) 

Denoising Scheme 5% 10% 15% 20% 25% 30% 

WAGFCNN (19) 34.7585 31.6751 29.2267 25.9174 27.6377 21.491 

Mean Filter (24) 27.9012 27.9785 27.1701 19.0244 21.6124 18.9912 

Gaussian Filter (25) 29.6697 28.7214 24.8557 21.7201 22.9144 18.6415 

Non-Local Means Filter 

(26) 
29.6042 27.7761 26.1207 23.0232 24.2485 19.9895 

DWT Filter (27) 30.8412 29.7776 27.1865 23.1251 23.2345 19.9863 

Wiener Filter (28) 30.7842 27.8801 26.1466 20.9431 22.1822 17.9665 

DnCNN (29) 31.9231 30.7766 28.5571 24.8768 25.6492 20.9813 

Median Filter (30) 31.8345 28.9547 27.1106 22.0094 13.2266 18.9809 

Proposed Approach 35.7412 32.8762 30.3473 26.9997 27.4233 23.6221 
 

Table 4: SNR of Various Denoising Methods at Different Levels of Salt-Pepper Noise (5–30% Intensity) 

 Salt and Pepper Noise at Different Intensities (%) 

Denoising Scheme 5% 10% 15% 20% 25% 30% 

WAGFCNN (19) 18.6893 15.4563 15.0895 9.7987 6.8956 5.1124 

Mean Filter (24) 26.9982 22.9896 20.1805 18.0253 13.9653 10.224 

Gaussian Filter (25) 24.7053 23.7319 20.8656 14.7141 11.6318 9.9032 

Non-Local Means Filter (26) 22.7497 19.8691 18.0366 12.8525 9.8674 8.0812 

DWT Filter (27) 22.4563 19.6455 17.8646 12.6789 9.4673 7.8956 

Wiener Filter (28) 24.8508 21.8702 19.1477 15.9636 10.9785 9.1923 

DnCNN (29) 20.0456 17.8654 16.9213 11.0486 7.9564 6.2893 

Median Filter (30) 25.8455 21.976 20.1306 15.0174 11.891 10.2377 

Proposed Approach 18.6065 15.4352 14.8082 9.8063 6.8898 5.1328 
 

Table 5: Evaluation of MSE for Various Filtering Techniques 

Images 

(%Nois

e) 
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Mean 

Filter 

(24) 
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an 

Filter 
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Filter 
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Media

n 

Filter 
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ed 
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ch 

NI1(5%

) 
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6 
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NI2(10
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92 
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2 
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02 
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7 

105.942

6 
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82.72 33.5321 

NI3(15

%) 
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86 

212.57

42 

158.85

85 

124.28

84 
157.914 

90.650

6 

126.47

96 
60.0276 

NI4(20

%) 

166.471

7 
814.03 

437.59

3 

324.16

07 

316.64

34 

523.323

7 

211.54

39 

409.39

3 

129.750

9 

NI5(25

%) 

112.023

9 

448.58

05 

332.38

42 

244.47

27 

308.76

67 

393.423

6 

177.07

63 

793.28

81 
117.693 

NI6(30

%) 

461.296

8 

820.27

67 

889.05

86 

651.82

41 

652.30

45 

1038.55

71 

518.74

08 

822.22

45 

282.403
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Table 6: SSIM Values for Images Processed with the Proposed Method vs. Conventional Filtering 

Techniques 

IMAGE 
WAGFCN

N (19) 

Mean 

Filter 

(24) 

Gaussia

n Filter 

(25) 

Non-

Local 

Means 

Filter 

(26) 

DWT 

Filte
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(27) 
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er 

Filter 

(28) 

DnCN

N (29) 

Media

n 

Filter 

(30) 

Propose

d 

Approac

h 

NI1(5%) 0.9991 
0.977

5 
0.9774 0.9834 

0.99

52 

0.986

3 
0.9987 0.9796 0.9998 

NI2(10%

) 
0.9981 

0.964

7 
0.9408 0.9694 

0.98

76 

0.958

9 
0.9899 0.9571 0.9991 

NI3(15%
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0.9978 

0.929
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0.9071 0.9712 
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0.933
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NI4(20%
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0.8703 0.9391 
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0.904
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0.9786 0.9051 0.9981 

NI5(25%

) 
0.9796 

0.896

3 
0.9278 0.9545 

0.95

89 

0.912

3 
0.9785 0.9042 0.9945 

NI6(30%

) 
0.9866 

0.912

1 
0.9221 0.9486 

0.96

75 

0.934

5 
0.9897 0.8964 0.9935 

 

 
Figure 4: PSNR for Different Denoising Methods at Different Intensities of Noise Levels 

 

 
Figure 5: SNR for Different Denoising Methods to Varying Intensities of Noise Levels 
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Figure 6: MSE Values for Different Denoising Schemes for Images 

 

 
Figure 7: Comparison of SSIM Values with Different Image Denoising Methods 

 

High-quality medical images are essential for 

accurate diagnostics, particularly in detecting fine 

structures and subtle abnormalities that may be 

hidden by noise in conventional CT images. The 

proposed denoising method enhances the 

visibility of small nodules, facilitating early 

detection of conditions such as lung cancer. 

Furthermore, the improved preservation of edges 

and textures allows for precise identification of 

tumor boundaries, which is vital for accurate 

staging and treatment planning. Enhanced image 

quality also enables surgeons and radiologists to 

develop more precise interventions, thereby 

reducing the likelihood of complications and 

improving treatment success rates. Additionally, 

clearer images play a crucial role in monitoring 

disease progression by ensuring reliable and 

consistent comparisons across sequential scans. 

These improvements collectively contribute to 

better patient care, reduced diagnostic errors, and 

a lower strain on healthcare systems. 

Ablation Study 
An ablation study in machine learning involves 

systematically removing or modifying individual 

components of a model to understand their 

impact on overall performance. By isolating the 

effects of each component, researchers can gain 

insights into which parts of the model are most 

crucial for its success. The Table 7 shows the 

details of ablation study performed here showing 

superiority of proposed method. 

 

Table 7:  Ablation Study Details 

Model  PSNR SSIM 

Original (Inception, Adversarial + L1 Loss) 32.5 0.92 

No Inception 31.8 0.9 

L1 Loss Only 31.5 0.89 

Modified Generator 32.2 0.91 
 

Limitations of Study 
The proposed method shows notable 

advancements in CT image denoising but has 

some limitations. One key concern is its 

generalization ability. When applied to datasets or 

imaging modalities that differ from the ones used 

during training, the model's performance might 

degrade. This issue indicates the necessity of 

retraining or fine-tuning the model to account for 

variations in noise characteristics, resolution, or 
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anatomical structures. Another limitation is the 

computational demand required for training. The 

deep architecture and incorporation of GANs 

necessitate significant GPU resources, which could 

impede its deployment in real-time clinical 

settings. Additionally, the model's sensitivity to 

hyper parameters like learning rate, batch size, 

and dropout rate presents a challenge. Incorrect 

hyper parameter selection can result in unstable 

training or diminished performance, highlighting 

the need for careful optimization. Finally, 

although the model has been tested on a standard 

dataset, further validation with real-world clinical 

data, featuring a range of noise patterns, is crucial 

to establish its robustness. Addressing these 

challenges will be essential for improving the 

model's applicability and efficiency in medical 

imaging applications. 
 

Conclusion 
Noise removal from CT scan images is an 

important initial step in the diagnosis of 

abnormalities. We propose a new architecture for 

improving image quality that employs deep dense 

GANs.  Throughout the restoration procedure, we 

ensure that the damaged image remains legible. It 

produces better results than many other ways. 

This dense network successfully suppresses noise 

while preserving fine-grained image information. 

The suggested method is evaluated by measuring 

the highest signal-to-noise ratio, mean square 

error, and structural similarity index. The 

experimental results suggest that the proposed 

technique outperforms the existing order. 
 

Abbreviation 
Nil. 
 

Acknowledgment 
None. 
 

Author Contributions 
Conceptualization, experimentation, formal 

analysis, rough draft of manuscript by NLL. 

Supervision, writing reviews and editing by THJ.  
 

Conflict of Interest 
The authors declared that there are no conflicts of 

interest regarding the publication of this 

manuscript. 
 

Ethics Approval 
Not applicable.  
 

Funding 
No Funding received for research work. 
 

References 
1. Rausch I, Mannheim JG, Kupferschläger J, la Fougère 

C, Schmidt FP. Image quality assessment along the 
one metre axial field-of-view of the total-body 
Biograph Vision Quadra PET/CT system for 18F-
FDG. EJNMMI Phys. 2022 Dec;9(1):87. 

2. Das KP, Chandra J. A review on preprocessing 
techniques for noise reduction in PET-CT images for 
lung cancer. In: Saraswat M, Sharma H, 
Balachandran K, Kim JH, Bansal JC, editors. Congress 
on Intelligent Systems. Singapore: Springer Nature; 
2022; 111: 455–475.  

3. Choi H, Jeong J. Despeckling algorithm for removing 
speckle noise from ultrasound images. Symmetry. 
2020; 12(6):938.  

4. Tian C, Fei L, Zheng W, Xu Y, Zuo W, Lin CW. Deep 
learning on image denoising: An overview. Neural 
Networks. 2020; 131: 251–75.  

5. Kadhim MA. Restoration medical images from 
speckle noise using multifilters. In: 2021 7th 
International Conference on Advanced Computing 
and Communication Systems (ICACCS). 2021; 
1:1958–63.  

6. Diwakar M, Kumar M. A review on CT image noise 
and its denoising. Biomed Signal Process Control. 
2018; 42:73–88.  

7. Bhonsle D, Bagga J, Mishra SK, Sahu C, Sahu V, 
Mishra A. Reduction of Gaussian noise from 
computed tomography images using optimized 
bilateral filter by enhanced grasshopper algorithm. 
In: 2022 Second International Conference on 
Advances in Electrical, Computing, Communication 
and Sustainable Technologies (ICAECT); 2022; 1–9. 
Available from: https://doi.org/ 
10.1109/ICAECT54875.2022.9808017 

8. Mohd Sagheer SV, George SN. A review on medical 
image denoising algorithms. Biomed Signal Process 
Control. 2020; 61:102036.  

9. Diwakar M. CT image denoising using NLM and 
correlation-based wavelet packet thresholding. IET 
Image Process. 2018; 12:708–15.  

10. Yuan Q, Peng Z, Chen Z, Guo Y, Yang B, Zeng X. Edge-
preserving median filter and weighted coding with 
sparse nonlocal regularization for low-dose CT 
image denoising algorithm. J Healthcare Eng. 2021; 
2021(1):6095676.  

11. Kim BG, Kang SH, Park CR, Jeong HW, Lee Y. Noise 
level and similarity analysis for computed 
tomographic thoracic image with fast non-local 
means denoising algorithm. Appl Sci. 2020; 
10(21):7455.  

12. Majeeth SS, Babu CNK. Gaussian noise removal in an 
image using fast guided filter and its method noise 
thresholding in medical healthcare application. J 
Med Syst. 2019; 43(8):280.  

13. Liang H, Zhao S. Salt and Pepper Noise Suppression 
for Medical Image by Using Non-local Homogenous 
Information. Cham: Springer International 
Publishing; 2020; 810:189–99.  

14. Gupta S, Sunkaria RK. Real-time salt and pepper 
noise removal from medical images using a 
modified weighted average filtering. In: 2017 



Lokhande and Jaware,                                                                                                                                    Vol 6 ǀ Issue 1 

878  

Fourth International Conference on Image 
Information Processing (ICIIP); 2017; 1–6.  
Available from: https://doi: 
10.1109/ICIIP.2017.8313718 

15. Garg B. Restoration of highly salt-and-pepper-noise-
corrupted images using novel adaptive trimmed 
median filter. Signal Image Video Process. 2020; 
14(8):1555–63.  

16. Elhoseny M, Shankar K. Optimal bilateral filter and 
convolutional neural network-based denoising 
method of medical image measurements. 
Measurement. 2019; 143:125–35.  

17. Chen L, Gou S, Yao Y, Bai J, Jiao L, Sheng K. Denoising 
of low dose CT image with context-based BM3D. In: 
2016 IEEE Region 10 Conference (TENCON); 2016; 
682–685.  Available from: https://doi: 
10.1109/TENCON.2016.7848089 

18. Wolterink JM, Leiner T, Viergever MA, Isgum I. 
Generative adversarial networks for noise 
reduction in low-dose CT. IEEE Trans Med Imaging. 
2017; 36(12):2536–45.  

19. Abuya TK, Rimiru RM, Okeyo GO. An image 
denoising technique using wavelet-anisotropic 
Gaussian filter-based denoising convolutional 
neural network for CT images. Appl Sci. 2023; 
13(21):12069.  

20. Creswell A, White T, Dumoulin V, Arulkumaran K, 
Sengupta B, Bharath AA. Generative adversarial 
networks: An overview. IEEE Signal Process Mag. 
2018; 35(1):53–65.  

21. Hasan MM, Wahid KA. Low-cost lifting architecture 
and lossless implementation of Daubechies-8 
wavelets. IEEE Trans Circuits Syst I Reg Pap. 2018; 
65(8):2515–23.  

22. Mehendale T, Ramina V, Pinge S, Kulkarni S. 
Analysis of the effects of different types of noises 
and wavelets used in denoising of an image using 
wavelet transform. In: 2020 11th International 
Conference on Computing, Communication and 
Networking Technologies (ICCCNT); 2020; 1–5.  
Available from: 
https://doi.org/10.1109/ICCCNT49239.2020.9225
629. 

23. Armato SG 3rd, McLennan G, Bidaut L, McNitt-Gray 
MF, Meyer CR, Reeves AP, et al. The Lung Image 
Database Consortium (LIDC) and Image Database 
Resource Initiative (IDRI): A completed reference 
database of lung nodules on CT scans. Med Phys. 
2011; 38(2):915–31.  

24. Anam C, Adi K, Sutanto H, Arifin Z, Budi WS, 
Fujibuchi T, et al. Noise reduction in CT images 
using a selective mean filter. J Biomed Phys Eng. 
2020; 10(5):623–34.  

25. Mayasari R, Heryana N. Reduce noise in computed 
tomography image using adaptive Gaussian filter. 
2019. Available from: 
https://arxiv.org/abs/1902.05985   

26. Zhang X. A modified non-local means using bilateral 
thresholding for image denoising. Multimed Tools 
Appl. 2024; 83(3):7395–416.  

27. You N, Han L, Zhu D, Song W. Research on image 
denoising in edge detection based on wavelet 
transform. Appl Sci. 2023; 13(3):1837.  

28. Sarita, Dass R, Saini J. Assessment of de-noising 
filters for brain MRI T1-weighted contrast-
enhanced images. In: Marriwala N, Tripathi CC, Jain 

S, Mathapathi S, editors. Emergent Converging 
Technologies and Biomedical Systems. Singapore: 
Springer Singapore; 2022; 841:607–13.  

29. Wang F, Huang H, Liu J. Variational based mixed 
noise removal with CNN deep learning 
regularization. IEEE Trans Image Process. 2019; 
29:1246-58.  

30. Ștefănigă SA. Fine-tuned medical images denoising 
using median adaptive Gaussian and convolutional 
neural networks. Sensors. 2022; 22(22):8810.  


