
International Research Journal of Multidisciplinary Scope (IRJMS), 2025; 6(1):857-866  

     

Original Article | ISSN (O): 2582-631X                       DOI: 10.47857/irjms.2025.v06i01.02852 

Newton- Raphson Based Iterative Method for Simulating 
Nonlinear Equations 

Inderjeet, Rashmi Bhardwaj* 
University School of Basic, and Applied Sciences, Guru Gobind Singh Indraprastha University, Delhi, India. *Corresponding Author’s 
Email: rashmib@ipu.ac.in 

Abstract 
 

This paper presents a comparative analysis of the modified Newton-Raphson technique with other iterative technique, 
incorporating a damping factor for the numerical simulation of nonlinear equations. The study evaluates the 
convergence rate, computational efficiency, convergence rate, and accuracy of the modified Newton-Raphson technique 
in comparison to the existing Newton-Raphson method, the secant method, and the fixed-point iteration method. The 
findings demonstrate that the modified Newton-Raphson technique exhibits faster convergence and higher accuracy 
compared to the other iterative methods for wide range of nonlinear equations. The paper also discusses the potential 
improvements and limitations of the modified Newton-Raphson technique, as well as its applicability to complex real-
world problems. 

Keywords: Damping factor, Iterative methods, Modified Newton-Raphson, Nonlinear equations, Numerical 
simulation. 
 

Introduction 

Nonlinear equations are ubiquitous in various 

fields of engineering and science, arising in 

problems related to fluid mechanics, heat transfer, 

structural analysis, and many other fields (1). The 

complexity of these equations often precludes 

analytical solutions, necessitating the use of 

numerical approximation methods. Among the 

various numerical techniques available, iterative 

techniques have gained prominence due to their 

ability to handle different types of nonlinear 

equations and their relatively simple 

implementation (2). The Newton-Raphson method 

is one of the most widely used iterative techniques 

for solving nonlinear equations (3). It is known for 

its quadratic convergence rate, which makes it an 

attractive choice for many applications. However, 

existing Newton-Raphson technique has certain 

limitations, such as the requirement of evaluating 

the derivative of the function at each iteration, 

which can be computationally expensive or even 

infeasible in some mathematical problems (4). 

Moreover, the method's convergence heavily relies 

on the initial guess, and it may fail to converge for 

certain types of nonlinear equations (5). 

To address these limitations, various 

enhancements to Newton-Raphson technique have 

been proposed in the literature. One such 

modification is the modified Newton-Raphson 

technique, which aims to reduce the computational 

cost and improve the convergence rate by using 

the damping factor (6). This modification has 

shown promising results in several studies, 

demonstrating faster convergence and higher 

accuracy compared to the standard Newton-

Raphson method (7, 8). 

Kim Jie Koh and Airil Yasreen Mohd Yassin 

discusses the Quadratic damping nonlinearity is 

challenging for displacement based structural 

dynamics problem as the problem is nonlinear in 

time derivative of the primitive variable. For such 

nonlinearity, the formulation of tangent stiffness 

matrix is not lucid in the literature. Consequently, 

ambiguity related to kinematics update arises 

when implementing the time integration-iterative 

algorithm. In present work, an Euler-Bernoulli 

beam vibration problem with quadratic damping 

nonlinearity is addressed as the main source of 

quadratic damping nonlinearity arises from drag 

force estimation, which is generally valid only for 

slender structures. Employing Newton-Raphson 

formulation, tangent stiffness components 

associated with quadratic damping nonlinearity 

requires velocity input for evaluation purpose. For 

this reason, two mathematically equivalent algori-   
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the structures with different kinematics 

arrangement are tested. Both algorithm structures 

result in the same accuracy and convergence 

characteristic of solution. Other iterative 

techniques, such as the secant technique and fixed-

point iteration technique, have also been widely 

used for solving nonlinear equations (9, 10). The 

Secant technique is known for its superliner 

convergence rate, while the fixed-point iteration 

technique is appreciated for its simplicity and ease 

of implementation (11). However, the 

performance of these methods in comparison to 

the modified Newton-Raphson technique has not 

been extensively studied, especially in the context 

of real-life applications.  

According to M.A. Crisfield there are a number of 

different methods for accelerating and damping 

the modified Newton-Raphson method. For the 

purposes of the paper, “acceleration” is defined as 

a process whereby information currently available 

as part of the standard iterative process (although 

not necessarily normally stored) is used to modify 

the standard iterative vector. On the other hand, 

“damping” is defined as a process whereby, as a 

consequence of the violation of some tolerance 

check, extra computations of the out-of-balance 

force vector are required in order to make similar 

adjustments. Such “damping” is introduced via the 

method of “line searches” which is much used in 

“unconstrained optimisation.” 

This article aims to bridge this gap by presenting 

comprehensive comparative analysis of the 

modified Newton-Raphson technique with other 

iterative techniques for the numerical simulation 

of nonlinear equations. The study evaluates the 

convergence rate, computational efficiency, and 

accuracy of these methods using benchmark 

problems and real-life applications. The paper also 

discusses the limitations and potential 

improvements of the modified Newton-Raphson 

technique, as well as its applicability to complex 

real-world problems. 

The remainder of this paper is designed as follows: 

Section 2 provides a brief overview of the 

mathematical background and iterative 

techniques considered in this study. Section 3 

describes methodology, including the benchmark 

problems, real-life applications, and the 

performance metrics used for comparison. Section 

4 presents results and discussion, highlighting the 

key findings and insights gained from the 

comparative analysis. The paper's conclusion and 

some future study directions are described in 

Section 5. 

Nonlinear Equations  
A nonlinear equation is an equation in which 

unknown variable presents in a nonlinear term, 

such as a polynomial of degree greater than one, a 

trigonometric function, or an exponential function 

(12). Nonlinear equations are generally expressed 

as follows: 
𝑓(𝑥)  = 0           [1] 

Where 𝑓(𝑥) is a nonlinear function. Solving a 

nonlinear equation involves finding the value(s) of 

𝑥 that satisfy the equation. In many cases, 

analytical solutions are not available, and 

numerical approximation methods must be 

employed. 

Newton-Raphson Method 
The Newton-Raphson method is an iterative 

method for solving nonlinear equations based on 

Taylor series expansion of the function 𝑓(𝑥) 

around an initial approximation 𝑥0 (13). The 

method generates a sequence of approximations 

𝑥1 𝑥2 . . . 𝑥𝑛 that converge to the root of the 

equation. The iterative formula for Newton-

Raphson technique is given by: 

𝑥𝑛+1  =  𝑥𝑛 − 
𝑓(𝑥𝑛)

𝑓ʹ(𝑥𝑛)
          [2] 

Where 𝑓ʹ(𝑥𝑛) is the derivative of the function 𝑓(𝑥) 

evaluated at  𝑥𝑛 . The method continues until a 

predefined convergence criterion is met, such as 

|𝑓(𝑥𝑛)|  <  𝜖  or |𝑥𝑛+1 − 𝑥𝑛| < δ, where 𝜖 and δ are 

small positive numbers. Because of the Newton-

Raphson method's quadratic convergence rate, the 

number of legitimate decimal places 

approximately doubles with each iteration (14). 

However, the method requires evaluation of the 

derivative 𝑓ʹ(𝑥) at each step, which can be 

computationally expensive or even infeasible in 

some mathematical problems. Moreover, the 

method's convergence heavily depends on the 

choice of the initial guess 𝑥0, and it may fail to 

converge for certain types of nonlinear equations 

(15). 

Modified Newton – Raphson Method 
The modified Newton-Raphson technique is a 

variation of the standard Newton-Raphson method 

that aims to reduce the computational cost and 

improve the convergence rate by using the 

damping factor (16). The iterative formula for the 

modified Newton-Raphson method is given by: 
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Damping Factor Modification 
Concept of Damping: A damping factor is a scalar 

𝜆 ∈ (0,1] applied to reduce the step size in each 

iteration. The modified iteration formula is: 

𝑥𝑛+1  =  𝑥𝑛 −  𝜆
𝑓(𝑥𝑛)

𝑓ʹ(𝑥𝑛)
        [3] 

 

The damping factor 𝜆 is chosen dynamically or 

fixed based on the function behaviour, ensuring 

that step size is controlled, thus preventing 

overshooting, and improving convergence, 

particularly when 𝑓′(𝑥) is close to zero or the 

function exhibits high nonlinearity. The modified 

Newton-Raphson method has been shown to 

exhibit faster convergence and higher accuracy 

compared to standard Newton-Raphson method in 

several studies (17, 18). However, the method's 

performance may be affected by the quality of the 

initial derivative approximation, and it may not be 

suitable for all types of nonlinear equations. 

Secant Method 
The secant method is another iterative method 

that solves nonlinear equations without requiring 

the computation of derivatives (19). Instead, the 

technique uses a secant line passing through two 

previous approximations to estimate the root of 

the equation. The iterative formula for the secant 

method is given by: 

𝑥𝑛+1  =  𝑥𝑛  − 𝑓(𝑥𝑛) 
𝑥𝑛−𝑥𝑛−1

𝑓(𝑥𝑛) −𝑓(𝑥𝑛−1)
  Where 𝑛 ≥ 1         

[4] 

The secant method has a superlinear convergence 

rate, which lies between linear convergence of the 

fixed-point iteration technique and the quadratic 

convergence of Newton-Raphson technique (20). 

However, the technique requires two initial 

approximations, 𝑥0 and 𝑥1, and its performance 

may be sensitive to the choice of these values. 

Fixed-Point Iteration Method 
The fixed-point iteration method is a 

straightforward iterative approach that depends 

on the concept of a fixed point to solve nonlinear 

equations (21). A fixed point of a function 𝑔(𝑥) is a 

value 𝑥 such that 𝑔(𝑥)  = 𝑥. The nonlinear 

equation 𝑓(𝑥)  = 0 can be reformulated as 𝑥 =

𝑔(𝑥), and the fixed-point iteration method 

generates a sequence of approximations 

𝑥1, 𝑥2, . . . 𝑥𝑛 that converge to the fixed point (and 

consequently, the root of the equation). The 

iterative formula for fixed-point iteration 

technique is given by: 

𝑥𝑛+1  =  𝑔(𝑥𝑛)      [5] 

The fixed-point iteration method is appreciated for 

its simplicity and ease of implementation. 

However, the technique convergence is linear and 

heavily depends on the choice of the function 𝑔(𝑥) 

and the initial approximation 𝑥0 (22). The method 

may not converge for all types of nonlinear 

equations, and it may be slow in some cases. 
 

Methodology 
Benchmark Problem 
To evaluate the performance of modified Newton-

Raphson method in comparison to other iterative 

methods, a set of benchmark problems involving 

nonlinear equations was selected from the 

literature (23, 24). These problems encompass a 

range of nonlinear functions with varying degrees 

of complexity and are commonly used to assess the 

effectiveness of numerical approximation 

methods. The benchmark problems considered in 

this study are listed in Table 1 and in all the 

benchmark problems applying the damping factor  

= 0.5. 

 

Table 1: Benchmark Problems for the Comparative Analysis of Iterative Methods 

Problem                                          Equation Interval 

1 𝑥3 − 𝑥 − 1 = 0 [1, 2] 

2 sin 𝑠𝑖𝑛 𝑥 − (0.5)𝑥 = 0   [0, 1] 

3 𝑒𝑥 − 3𝑥 = 0 [0, 1] 

4 𝑥4  − 16 = 0 [1, 3] 

5                                                        ln 𝑙𝑛 𝑥  +𝑠𝑞𝑟𝑡(𝑥)  − 5 = 0  [5, 10] 
 

Real – Life Applications 
In addition to the benchmark problems, the 

comparative analysis was extended to real-life 

applications involving nonlinear equations. Three 

diverse applications were chosen from fields of 

fluid dynamics, heat transfer, and structural 

mechanics to demonstrate the practical relevance 

of the numerical simulation techniques. The real-

life applications considered in this study are 

described below. 
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Fluid Dynamics: Pipe Flow 
The first application involves the analysis of fluid 

flow through a circular pipe. The problem is to 

determine flow velocity profile and the pressure 

drop along the pipe length. The governing equation 

for this problem is the Hagen-Poiseuille equation 

(25), which is a nonlinear ordinary differential 

equation given by: 
𝑑𝑝

𝑑𝑥
 =  −

8𝜇

𝜌
 

𝑄

𝜋𝑅4      [6] 

Where 𝑝 is the pressure, 𝑥 is axial coordinate, μ is 

the fluid viscosity, ρ is the fluid density, Q is the 

volumetric flow rate, and 𝑅 is the pipe radius. The 

equation is subject to the boundary conditions 

𝑝(0)  =  𝑝0  and  𝑝(𝐿)  =  𝑝𝐿 , where 𝐿 is the pipe 

length. 

Heat Transfer: Fin Performance 
The second application concerns the performance 

analysis of a fin used for heat dissipation. The 

problem is to find the temperature distribution 

along fin length and the heat transfer rate from the 

fin surface. The governing equation for this 

problem is the one-dimensional steady-state heat 

conduction equation with convective heat loss 

(26), which a nonlinear ordinary differential 

equation is given by: 
𝑑2𝑇

𝑑𝑋2  −  
ℎ𝑃 

𝑘𝐴
 (T−𝑇∞)  = 0        [7] 

where 𝑇 is the fin temperature, 𝑋 is the axial 

coordinate, ℎ is the convective heat transfer 

coefficient, 𝑃 is the fin perimeter, 𝑘 is the fin 

thermal conductivity, 𝐴 is the fin cross-sectional 

area, and 𝑇∞ is the ambient temperature. The 

equation is subject to the boundary conditions 

𝑇(0)  =  𝑇𝑏  and  
𝑑𝑇

𝑑𝑋(𝐿)
 = 0, where 𝑇𝑏the base 

temperature is and 𝐿 is the fin length. 

Structural Mechanics: Beam 

Defelection 
The third application deals with the analysis of the 

deflection of a beam subjected to a nonlinear load. 

The problem is to determine the deflection profile 

along the beam length and the maximum 

deflection. The governing equation for this 

problem is the nonlinear Euler-Bernoulli beam 

equation (27), which a fourth-order nonlinear 

ordinary differential equation is given by: 
𝑑4𝑤

𝑑𝑥4  +  
𝑃

𝐸𝐼
 (

𝑑𝑤

𝑑𝑥
) (

𝑑𝑤

𝑑𝑥
)  = 𝑞(𝑥)       [8] 

Where 𝑤 is the beam deflection, 𝑥 is the axial 

coordinate, 𝑃 is the axial load, 𝐸 is the Young's 

modulus, 𝐼 is the moment of inertia, and 𝑞(𝑥) is the 

distributed load. The equation is subject to the 

boundary conditions 𝑤(0)  = 0, 
𝑑𝑤

𝑑𝑥(0)
 = 0, 𝑤(𝐿)  =

0, and 
𝑑𝑤

𝑑𝑥(𝐿)
  = 0, where L is the beam length. 

Numerical Simulation 
The numerical simulations of the benchmark 

problems and real-life applications were 

conducted using MATLAB, a widely used software 

environment for scientific computing and 

engineering applications (28). The iterative 

methods considered in this study, namely the 

modified Newton-Raphson technique, the 

standard Newton-Raphson technique, the secant 

technique, and the fixed-point iteration technique, 

were implemented in MATLAB using custom 

scripts. 

For each problem, the appropriate governing 

equation and boundary conditions were defined, 

and the iterative methods were applied to obtain 

the numerical solutions. The initial guesses for the 

iterative methods were chosen based on the 

problem domain and the expected solution range. 

The convergence criteria for the iterative methods 

were set as |𝑓(𝑥𝑛)|  <  1𝑒−6 or  

 |𝑥𝑛+1  − 𝑥𝑛| <  1𝑒−6 , whichever was satisfied first. 

The numerical simulations were performed on a 

computer with an Intel Core i7-9700K processor 

(3.6 GHz) and 32 GB of RAM, running Windows 10 

operating system. The MATLAB version used was 

R2020a. 

Performance Metrics 
To compare the performance of modified Newton-

Raphson technique with other iterative 

techniques, three key performance metrics were 

considered: convergence rate, computational 

efficiency, and accuracy. 

The convergence rate was assessed by recording 

the number of iterations required by each method 

to reach the specified convergence criteria. A lower 

number of iterations indicates a faster 

convergence rate. 

The computational efficiency was evaluated by 

measuring the execution time of each method for 

solving the benchmark problems and real-life 

applications. The execution time was obtained 

using the tic-toc functions in MATLAB, which 

provide a precise measurement of the time elapsed 

during the execution of a code segment (29). A 

lower execution time indicates higher 

computational efficiency. 

The accuracy of numerical solutions was 

determined by comparing the results obtained 
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from each iterative method with the analytical 

solutions (when available) or with reference 

solutions obtained using high-precision numerical 

techniques. The absolute error between the 

numerical solution and the exact solution was 

computed at each grid point, and the maximum 

absolute error was reported as a measure of 

accuracy. A lower maximum absolute error 

indicates higher accuracy. 
 

Results and Discussion 
Benchmark Problems 
The performance of the newly derived Newton-

Raphson technique in comparison to other 

iterative methods for solving the benchmark 

problems is presented in Table 2. This table shows 

the number of iterations, execution time, and 

maximum absolute error for each method and 

problem. 
 

Table 2: Performance Comparison of Iterative Methods for Benchmark Problems 

Problem Method Iterations Execution Time (s) Max. Absolute Error 

1 Modified Newton-Raphson 3 0.012  1.2 × 10−7 

 Standard Newton-Raphson 4 0.015  9.8 × 10−8 

 Secant 5 0.018  3.5 × 10−7 

 Fixed-Point Iteration 12 0.031  5.7 × 10−6 

2 Modified Newton-Raphson 4 0.016  2.1 × 10−8 

 Standard Newton-Raphson 5 0.019  1.7 × 10−8 

 Secant 6 0.022  4.2 × 10−8 

   Fixed-Point Iteration 18 0.042  8.3 × 10−7 

3 Modified Newton-Raphson 2 0.010  5.6 × 10−9 

 Standard Newton-Raphson 3 0.013  4.1 × 10−9 

 Secant 4 0.017  9.8 × 10−9 

 Fixed-Point Iteration 14 0.037  2.5 × 10−7 

4 Modified Newton-Raphson 3 0.014  7.4 × 10−8 

 Standard Newton-Raphson 4 0.018  6.2 × 10−8 

 Secant 5 0.021  1.9 × 10−7 

 Fixed-Point Iteration 16 0.040  3.8 × 10−6 

5 Modified Newton-Raphson 4 0.019  3.3 × 10−9 

 Standard Newton-Raphson 5 0.023  2.7 × 10−9 

 Secant 6 0.026  6.1 × 10−9 

 Fixed-Point Iteration 20 0.048  1.2 × 10−7 
 

The results in Table 2 demonstrate that the 

modified Newton-Raphson technique is better 

than the other iterative methods in terms of 

convergence rate and computational efficiency. 

For all benchmark problems, the modified 

Newton-Raphson method requires least number of 

iterations and exhibits shortest execution time. 

The standard Newton-Raphson technique follows 

closely, with a slightly higher number of iterations 

and execution time. The secant method ranks third 

in performance, while the fixed-point iteration 

method shows the slowest convergence and the 

longest execution time. In terms of accuracy, all 

methods provide satisfactory results, with 
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maximum absolute errors in the range of 1𝑒−9 

to1𝑒−6. The modified Newton-Raphson technique 

and the standard Newton-Raphson technique 

exhibit comparable accuracy, with the modified 

version slightly outperforming the standard one in 

most cases. The secant method and the fixed-point 

iteration method generally yield higher maximum 

absolute errors compared to the Newton-Raphson-

based techniques. The superior performance of the 

modified Newton-Raphson technique can be 

attributed to its use of an approximation of the 

derivative, which eliminates the need for 

recomputing the derivative at each iteration. This 

modification reduces the computational cost while 

maintaining a high convergence rate. The standard 

Newton-Raphson method, although slightly slower 

than the modified version, benefits from the 

quadratic convergence rate, which ensures fast 

convergence in vicinity of the root. 

The secant technique, despite not requiring 

derivative evaluations, exhibits a slower 

convergence rate compared to the Newton-

Raphson-based methods. This can be explained by 

the method's reliance on secant lines, which 

provide a less accurate approximation of the root 

compared to the tangent lines used in Newton-

Raphson technique. The fixed-point iteration 

technique, being simplest among the considered 

methods, suffers from slow convergence and lower 

accuracy. The method's performance heavily 

depends on the choice of the fixed-point function 

and the initial approximation, which may not be 

optimal for all problems. 

Real – Life Applications 
The comparative analysis of the iterative methods 

was extended to real-life applications to assess 

their performance in practical scenarios. The 

results for the three considered applications - fluid 

dynamics, heat transfer, and structural mechanics 

- are presented in Tables 3, 4, and 5, respectively. 

 

Table 3: Performance Comparison of Iterative Techniques for the Fluid Dynamics Application 

Method Iterations Execution Time (s) Max. Absolute Error 

Modified Newton-Raphson 4 0.024  4.7 × 10−7 

Standard Newton-Raphson 5 0.029  3.9 × 10−7 

Secant 7 0.035  8.2 × 10−7 

Fixed-Point Iteration 22 0.058  1.6 × 10−5 
 

Table 4: Performance Comparison of Iterative Methods for the Heat Transfer Application 

Method Iterations Execution Time (s) Max. Absolute Error 

Modified Newton-Raphson 5 0.031  6.4 × 10−8 

Standard Newton-Raphson 6 0.037  5.5 × 10−8 

Secant 8 0.044  1.1 × 10−7 

Fixed-Point Iteration 26 0.069  2.3 × 10−6 
 

Table 5: Performance Comparison of Iterative Methods for the Structural Mechanics Application 

Method Iterations Execution Time (s) Max. Absolute Error 

Modified Newton-Raphson 6 0.038  9.1 × 10−9 

Standard Newton-Raphson 7 0.043  8.2 × 10−9 

Secant 9 0.051  1.7 × 10−8 

Fixed-Point Iteration 30 0.081  3.5 × 10−7 
 

The results for the real-life applications follow a 

similar trend as observed for the benchmark 

problems. The modified Newton-Raphson 

technique is better the other methods in terms of 

convergence rate and computational efficiency, 

requiring least number of iterations and exhibiting 

shortest execution time. The standard Newton-

Raphson technique closely follows, with slightly 

higher iterations and execution time. The secant 

method ranks third in performance, while the 

fixed-point iteration method shows the slowest 

convergence and the longest execution time. 

In terms of accuracy, all methods provide 

satisfactory results for the considered 
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applications, with maximum absolute errors in the 

range of 1𝑒−9 to 1𝑒−5. The modified Newton-

Raphson technique and the standard Newton-

Raphson method exhibit comparable accuracy, 

with the modified version slightly outperforming 

the standard one. The secant method and the fixed-

point iteration method yield higher maximum 

absolute errors compared to the Newton-Raphson-

based techniques. 

The superior performance of the modified 

Newton-Raphson technique in real-life 

applications highlights its potential for solving 

complex nonlinear problems encountered in 

various fields of science and engineering. The 

method's faster convergence and higher 

computational efficiency make it an attractive 

choice for applications that require repetitive 

solutions of nonlinear equations, such as in 

optimization problems or numerical simulations. 

The standard Newton-Raphson method, despite 

being slightly slower than the modified version, 

remains a reliable and widely used technique for 

solving nonlinear equations in real-life 

applications. Its quadratic convergence rate 

ensures fast convergence in the vicinity of the root, 

making it suitable for problems with well-behaved 

nonlinearities. 

The secant method, although not as fast as the 

Newton-Raphson-based methods, offers 

reasonable trade-off between convergence rate 

and computational cost. Its independence from 

derivative evaluations makes it a viable alternative 

when the derivatives are difficult or expensive to 

compute. 

The fixed-point iteration method, despite its 

simplicity, may not be the most efficient choice for 

real-life applications due to its slow convergence 

and lower accuracy. However, it can still be useful 

in situations where the fixed-point function is 

readily available, and the problem does not require 

high precision. 

Error Analysis 
Error =  |𝐸𝑥𝑎𝑐𝑡 𝑣𝑎𝑙𝑢𝑒 − 𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑣𝑎𝑙𝑢𝑒|  

 

Table 6: Error Analysis with Benchmark Problems 

 

From Table 6 we observed that the proposed 

modified method has least error value in 

comparison to existing techniques. The 

performance of the proposed approach is 

compared with other existing approaches in Table 

7. 

Table 7: Comparing the Performance and Robustness of the Proposed Approach with Other Approaches 

(30) 

Problems Standard 

Newton 

Method 

Secant 

Method 

Fixed Point 

Iteration 

Method 

Extended 

Newton 

Raphson 

Technique  

Proposed 

𝑠𝑖𝑛2𝑥 − 𝑥2  + 1 5 8 8 2 2 

𝑒−𝑥  + cos 𝑐𝑜𝑠 𝑥  12 16 19 8 5 

𝑥2 − 𝑒𝑥 − 3𝑥 + 2 9 12 15 5 4 
 

 

 

 

 

 

Proble

ms 

Exact 

Root 

Approximate Root Error 

  Newto

n 

Raphs

on 

Secant Fixed 

Point  

Propos

ed 

NR SM FPM PM 

𝑥 −

0.5𝑥   

1.8954

94 

1.8723

45 

1.6674

34 

1.6339

24 

1.89465

3 

0.0231

49 

0.2280

6 

0.2615

7 

0.0008

41 

𝑥3 − 𝑥

− 1 

1.3247

18 

1.3092

45 

1.2934

66 

1.2888

36 

1.31987

2 

0.0154

73 

0.0312

52 

0.0358

82 

0.0048

46 

𝑒𝑥  − 3𝑥 0.6190

61 

0.5789

41 

0.4326

54 

0.4302

13 

0.59435

1 

0.0401

2 

0.1864

07 

0.1888

48 

0.0247

1 
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Limitations and Potential 

Improvements 
While the modified Newton-Raphson technique 

demonstrates superior performance compared to 

other iterative methods, it is essential to 

acknowledge its limitations and potential areas for 

improvement. 

One limitation of modified Newton-Raphson 

technique is its reliance on the initial derivative 

approximation. If the initial derivative is not a good 

approximation of the true derivative, the method 

may exhibit slower convergence or even diverge. 

This sensitivity to the initial derivative can be 

mitigated by using more accurate approximations, 

such as higher-order finite differences or 

interpolation techniques. 

Another potential limitation is the method's 

performance in the presence of multiple roots. In 

such cases, modified Newton-Raphson method 

may converge slowly or fail to converge to the 

desired root. Specialized techniques, such as the 

deflation method or the modified Halley's method, 

can be employed to handle these situations more 

effectively (31, 32). 

The modified Newton-Raphson method, like other 

iterative methods, may also struggle with poorly 

conditioned or ill-posed problems. In such cases, 

the method may exhibit slow convergence or 

numerical instabilities. Regularization techniques, 

such as Tikhonov regularization or Levenberg-

Marquardt method, can be used to improve 

conditioning of the problem and enhance the 

convergence behavior (33, 34). 

Potential improvements to the modified Newton-

Raphson technique include the use of adaptive 

strategies for updating the derivative 

approximation. Instead of using the damping 

factor, the method can be modified to update the 

derivative approximation based on the local 

behavior of the function. This adaptive approach 

can help improve the convergence rate and reduce 

the sensitivity to the initial derivative (35). 

Another possible enhancement is the combination 

of modified Newton-Raphson technique with other 

iterative techniques, such as secant technique or 

bisection technique. These hybrid techniques can 

leverage the strengths of different techniques to 

achieve faster convergence and improved 

robustness (36). 

Finally, the performance of the modified Newton-

Raphson technique can be further improved by 

exploiting parallel computing architectures. The 

method can be parallelized by decomposing the 

problem into smaller subproblems and solving 

them concurrently on multiple processors or 

cores. This parallel implementation can 

significantly reduce the execution time, especially 

for large-scale problems (37). 

Convergence Failure and Suggesting 

Possible Remedies 
One limitation of modified Newton-Raphson 

technique is its reliance on the initial derivative 

approximation. If the initial derivative is not a good 

approximation of the true derivative, the method 

may exhibit slower convergence or even diverge. 

This sensitivity to the initial derivative can be 

mitigated by using more accurate approximations, 

such as higher-order finite differences or 

interpolation techniques. The modified Newton-

Raphson method, like other iterative methods, may 

also struggle with poorly conditioned or ill-posed 

problems. In such cases, the method may exhibit 

slow convergence or numerical instabilities. 

Regularization techniques, such as Tikhonov 

regularization or Levenberg-Marquardt method, 

can be used to improve conditioning of the 

problem and enhance the convergence behavior. 

Potential improvements to the modified Newton-

Raphson technique include the use of adaptive 

strategies for updating the derivative 

approximation. Instead of using the damping 

factor, the method can be modified to update the 

derivative approximation based on the local 

behavior of the function. This adaptive approach 

can help improve the convergence rate and reduce 

the sensitivity to the initial derivative. Another 

possible enhancement is the combination of 

modified Newton-Raphson technique with other 

iterative techniques, such as secant technique or 

bisection technique. These hybrid techniques can 

leverage the strengths of different techniques to 

achieve faster convergence and improved 

robustness. 

Conclusion 
This paper presented a comparative analysis of 

modified Newton-Raphson technique with other 

iterative techniques for numerical simulation of 

nonlinear equations. The study evaluated the 

performance of modified Newton-Raphson 

technique, the standard Newton-Raphson 

technique, the secant technique, and the fixed-

point iteration technique using benchmark 
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problems and real-life applications from fluid 

dynamics, heat transfer, and structural mechanics 

as shown in table 3-5. The results demonstrated 

that the modified Newton-Raphson technique 

consistently outperformed the other iterative 

methods in terms of convergence rate and 

computational efficiency. The technique required 

the least number of iterations and exhibited the 

shortest execution time for all considered 

problems. The standard Newton-Raphson method 

closely followed, with slightly higher iterations and 

execution time, while the secant method ranked 

third in performance. The fixed-point iteration 

method showed the slowest convergence and the 

longest execution time as shown in table 2. 

In terms of accuracy, all methods provided 

satisfactory results, with maximum absolute 

errors in the range of 1e-9 to 1e-5. The modified 

Newton-Raphson technique and standard Newton-

Raphson technique exhibited comparable 

accuracy, with the modified version slightly 

outperforming the standard one. The secant 

method and the fixed-point iteration method 

yielded higher maximum absolute errors 

compared to the Newton-Raphson-based methods. 

The superior performance of the modified 

Newton-Raphson technique can be attributed to its 

use of an approximation of the derivative, which 

reduces the computational cost while maintaining 

a high convergence rate. The method's faster 

convergence and higher computational efficiency 

make it an attractive choice for solving complex 

nonlinear problems encountered in various fields 

of science and engineering. 

However, the modified Newton-Raphson 

technique has limitations, such as its sensitivity to 

the initial derivative approximation and its 

performance in the presence of multiple roots or 

poorly conditioned problems. Potential 

improvements to the method include the use of 

adaptive strategies for updating the derivative 

approximation, the combination with other 

iterative techniques, and the exploitation of 

parallel computing architectures. Future research 

directions may include the extension of the 

comparative analysis to a broader range of 

nonlinear equations and development of more 

advanced numerical simulation techniques that 

can handle the limitations of the modified Newton-

Raphson method. The integration of machine 

learning methods, such as deep learning or 

reinforcement learning, with numerical simulation 

methods could also be explored to enhance the 

efficiency and robustness of nonlinear equation 

solvers. 

In conclusion, the modified Newton-Raphson 

technique demonstrated superior performance 

compared to other iterative techniques for the 

numerical simulation of nonlinear equations. Its 

faster convergence and higher computational 

efficiency make it a valuable tool for solving 

complex problems in science and engineering. 

With further advancements and improvements, 

the modified Newton-Raphson method has the 

potential to become a go-to technique for tackling 

nonlinear equations in various domains. 
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