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Abstract 
 

Monkeypox is a rapidly spreading virus which poses significant diagnostic challenges, due to its overlap with other viral 
illnesses. The availability of polymerase chain reaction (PCR) assays in resource-constrained environments is often 
hindered. In this work, deep learning is used to automate monkeypox detection by using skin lesion images. To enhance 
the quality and volume of the available dataset, advanced deep learning algorithms are combined with image 
augmentation techniques. By combining Flip, Mirror, rotate (FMR) random image augmentation with Automated White 
Balance Correction (AWBC), the detection model becomes more robust. With CoAtNet, a synthesis of convolutional 
neural networks and transformers, lesion images are captured both locally and globally. By using a hybrid architecture, 
the visual data can be analyzed more comprehensively and diagnostic errors may be reduced. This model is the most 
accurate, precise, recall, and F1-score with other existing models. An automated monkeypox detection system can be 
improved significantly by incorporating CNNs and transformers. Data augmentation strategies are also recommended 
as a way to enhance these models. The training dataset enhancing the model's ability to generalize to new cases. There 
is substantial promise in deep learning-based diagnostic tools for monkeypox, especially in areas with limited access 
to traditional laboratory testing. This work can support healthcare systems in combating the spread of this virus. 
Diagnostic gaps in such regions can be bridged with such systems, thereby contributing to the global health 
community's collective response. 

Keywords: CoAtNet, Deep Learning Pipeline, FMR Random Image Augmentation, Monkey Pox Diagnosis, MSLD, 
Multi-scale Attention-guided Lesion Segmentation, White Balance Correction.  
 

Introduction 
As a zoonotic virus that is spreading rapidly and 

showing symptoms that overlap with other 

viruses, such as chickenpox, measles, and hand-

foot-and-mouth disease (HFMD), monkeypox has 

resurfaced in recent months. A timely and accurate 

diagnosis is crucial to controlling outbreaks, 

especially in regions without adequate healthcare 

infrastructure. It is often difficult for resource-

constrained environments to access traditional 

diagnostic methods, such as Polymerase Chain 

Reaction (PCR), because they require specialized 

laboratory settings and are sometimes time-

consuming. An emerging solution to these 

challenges is the integration of artificial 

intelligence (AI) and deep learning into medical 

diagnostics. By applying deep learning models to 

skin lesion images, monkeypox has been 

demonstrated to be distinguished from other co-

infections with similar symptoms through 

automated diagnosis. The widespread deployment 

and effectiveness of these models, however, are 

hindered by several challenges. In low-resource 

settings, real-time, deployable solutions are 

needed because there is a shortage of labeled 

monkeypox images, there is data imbalance, and it 

is difficult to distinguish between diseases with 

similar symptoms. 

Several medical imaging tasks have shown 

remarkable success with deep learning, a subset of 

machine learning. These techniques could provide 

a quick, non-invasive screening method, assist 

healthcare workers in resource-limited settings, 

and possibly improve early detection rates for 

monkeypox. Such systems are, however, faced with  
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several challenges, including the limited 

availability of high-quality, diverse datasets, the 

need to distinguish monkeypox from visually 

similar conditions, as well as the need for models 

that can differentiate skin tones and lesion 

presentations accurately. A deep learning-based 

model for the early detection of monkeypox using 

skin lesion images is developed and enhanced in 

this paper. With FMR-based data augmentation 

and hybrid model architectures like CoAtNet, the 

work solves the critical challenges of data scarcity, 

model deployment and multi-modal image fusion. 

By applying advanced artificial intelligence 

techniques to monkeypox diagnosis. The initiative 

improves accuracy, robustness, and accessibility. 

Healthcare ethics are also discussed, especially 

privacy and security as work moves towards 

mobile-based, real-time diagnosis. Utilize deep 

learning to address these challenges of monkeypox 

detection on skin lesion images. The key aims in 

the work:   

• Multimodal imaging has the potential to 

improve the understanding of the disease. 

• The advanced techniques like GANs are 

employed to enhance and overcome data 

shortages. 

• A COATNET architecture combines CNN and 

transformer models to capture local and 

global image features. 

• Image quality is improved by automatic white 

balance, which reduces lighting variations. 

• An integrated healthcare model that is widely 

applicable to multiple settings both on the 

desktop and in the community. 

Among the evaluated models in the study, 

ResNet50, EfficientNet-B3, VGG16, and 

InceptionNetV3 (1). The researchers utilized 

Kaggle image datasets and applied data 

augmentation to enhance the sample size. The 

highest accuracy of 93% was achieved with the use 

of the EfficientNet-B3 model. Data sets with a 

variety of characteristics would produce more 

accurate and appropriate results. The work 

proposed using deep learning approaches to assist 

in early diagnosis of monkeypox. Monkeypox Skin 

Lesion Dataset (MSLD) was analyzed using a 

variety of pre-trained models, including 

EfficientNetB3, ResNet50V2, VGG16, 

DenseNet121, and InceptionV3 (2). By using pre-

trained models in the framework, healthcare 

providers in resource-limited settings will be able 

to use it more easily without needing large 

amounts of training data and specialized computer 

resources. The framework proposed represents a 

potential strategy for improving monkeypox 

detection and management. With a 98% accuracy 

rate, the EfficientNetB3 model achieved the 

highest result. 

According to the novel work, deep learning models 

can be used to automate the diagnostic process. A 

performance comparison between ResNet50, 

EfficientNetB3 and EfficientNetB7 is presented in 

this paper (3). A method is suggested for detecting 

monkey pox skin lesions early in the course of the 

disease. Even though a large dataset containing 

images from various countries of the world needs 

to be examined with other models, this study's 

results on a limited set of images are promising. 

The latest work suggested that a polymerase chain 

reaction (PCR) test could be used to diagnose 

monkeypox, but that the test takes time to 

determine the outcome (4). It would be beneficial 

if there was a non-clinical test that could help 

identify monkeypox in suspected patients. When 

sufficient training data is available, a variety of 

deep learning models can be used for this purpose. 

A sufficient amount of data has been added to 

existing datasets by extending them and adding 

new data. A pre-trained deep-learning model is 

then used to analyze this dataset, including 

ResNet50, EfficientNetB3, InceptionV3, and 

MobileNet2. These models have been compared 

for accuracy using this tool. 

Using Transfer Learning, the work proposes a 

method of classifying monkeypox skin lesions from 

chickenpox and normal skin lesions (5). Using skin 

lesion image datasets from news reports, public 

health websites and case studies, five Transfer 

Learning models were trained: MobileNetv2, 

ResNet50, Inceptionv3, EfficientNetB5 and 

Xception. The trained models are compared in 

order to select the most effective model, which can 

be used in any application that requires quick, 

automated detection of monkeypox skin lesions. 

According to the results of the classification of 

monkeypox skin lesions, MobileNetv2 had the best 

model accuracy of 98.78%. The study used the 

Kaggle Monkeypox Image dataset, which is open 

source (6). A data replication method was first 

applied to the images to increase the sample 

dataset. In this study, five deep learning models are 

compared for detecting monkeypox virus 
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(DesNet121, ResNet50, Xception, EfficientNetB3, 

and EfficientNetB7). The accuracy, recall, 

precision, F1 score, and confusion matrix 

demonstrate the effectiveness of the methods. A 

DesNet121, ResNet50, Xception, EfficientNetB3, 

EfficientNetB7 method is 72% accurate, while a 

ResNet50 method is 73% accurate. 

The accuracy metrics of the three methods were 

compared using previously trained CNN networks 

MobileNetV2, VGG16, and VGG19 on the 

Monkeypox Skin Image Dataset (7). Among the 

highest performance scores were 91.38 percent 

accuracy, 90.5% precision, 86.75 percent recall, 

and 88.25 percent f1 score obtained with 

MobileNetV2. According to the VGG16 method, the 

accuracy was 83.62%, while according to the 

VGG19 method, the accuracy was 78.45%. The 

research team classified monkeypox skin lesions 

with CNNs (8). The Grey Wolf Optimizer (GWO) 

improved CNN performance. The results improved 

accuracy, precision, recall, and AUC substantially. 

With the GWO optimizer, positively and negatively 

classified monkeypox cases were distinguished 

95.3% more accurately. Monkeypox diagnosis and 

monitoring can be improved by using this method. 

Patient outcomes may be improved by earlier 

detection of lesions. Additionally, this work 

invented a vision transformer technique based on 

patches. A technique is used to detect monkeypox 

and chickenpox in human skin images (9). Medical 

technology can enhance the diagnostic process for 

these diseases.  The ViT model is tested using a 

transfer learning approach for identifying subtle 

monkeypox and chickenpox patterns. This model's 

generalization capability was improved through 

carefully selected image augmentation techniques. 

It achieved 93% accuracy, precision, and recall in 

an evaluation of the patch-based ViT model.  

The technology-based approach used in the work, 

it detects skin lesions automatically with sufficient 

training examples (10). With the help of 

MobileNetV2, which is a Fully Connected 

Convolutional Neural Network (FCCNN), 

monkeypox diagnosis has been improved. It is 

more accurate than classical machine learning 

approaches at identifying monkeypox cases. 

Several measures of effectiveness were assessed, 

including recall, precision, F score, and accuracy. 

The precision score is 0.95% with 0.99% accuracy, 

the recall is 1.0%, the F-score is 0.98%, and the F-

score is 0.99%.  

According the study aims to improve feature 

selection and classification methods during a 

pandemic using metaheuristic optimization (11). 

Extracting the necessary features involves deep 

learning and transfer learning. Feature extraction 

is conducted using the GoogleLeNet network. In 

addition, features are selected using a binary 

implementation of the dipper throated 

optimization algorithm. After that, features are 

labeled by using a decision tree classifier. The 

work describes a hybrid artificial intelligence 

system that detects monkeypox in skin images 

(12). For skin images, a dataset of open sources 

was used. The dataset is multi-classed, containing 

chickenpox, measles, monkeypox, and normal. 

There is an unbalanced distribution of classes in 

the original dataset. In order to overcome this 

imbalance, several data augmentation procedures 

were used. A number of deep learning models, 

including CSPDarkNet, InceptionV4, MnasNet, 

MobileNetV3, RepVGG, SE-ResNet and Xception, 

were used for monkeypox detection after these 

operations. By combining the two most effective 

deep learning models with the short-term memory 

(LSTM) model, a unique hybrid deep learning 

model was created for this study.  

By analyzing skin lesion images, the work present 

an elegant, smart, and secure noninvasive, non-

contact method to diagnose MPX (13). To classify 

skin lesions as MPXV positive or negative, deep 

learning techniques are employed. A Kaggle 

monkeypox skin lesion dataset (MSLD) and a 

monkeypox skin image dataset (MSID) are used as 

evaluation datasets. Using sensitivity, specificity, 

and balanced accuracy, the work evaluated 

multiple deep learning models. It has 

demonstrated its potential for wide-scale 

deployment in monkeypox detection with highly 

promising results. By using deep learning 

approaches and classification models proposed a 

model for detecting mpox (14). Toward this goal, 

the work compared five common pretrained deep 

learning models for detecting MPox (VGG19, 

VGG16, ResNet50, MobileNetV2, and 

EfficientNetB3). A score for F1 was calculated 

based on accuracy, recall, precision, and precision 

of the models. In the experiments, the MobileNetV2 

model performed the best with 98.16% accuracy, 

0.96 recall, 0.99 precision, and 98 F1-score. 

Moreover, validation of the model with different 
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datasets showed that the highest accuracy of 

0.94% was achieved using the MobileNetV2 model.  

With deep-learning methods, the work aim to 

detect monkeypox disease rapidly and safely 

through skin lesions (15). The optimization of 

hyperparameters was supported by deep-learning 

tools and transfer learning tools. By customizing 

the transfer learning model together with hyper 

parameters, a hybrid function learning model was 

developed. A custom model was implemented for 

MobileNetV3-s, EfficientNetV2, ResNET50, Vgg19, 

DenseNet121, and Xception. Among the metrics 

evaluated and compared in this study were AUC, 

accuracy, recall, loss, and F1-score. A hybrid 

MobileNetV3-s model with optimal F1-score, AUC, 

accuracy, and recall achieved the best score, with 

an average F1-score of 0.98. It has been 

recommended the proposed work that anyone 

who is suspected to have monkeypox infection 

should undergo testing (16). It is advisable to 

collect samples from skin lesions or exudates, 

swabs, and crusts if these are available. The 

laboratory confirms suspected cases with nucleic 

acid amplification testing, such as real-time or 

conventional polymerase chain reactions.  

According to the work, the approach involves 

normalizing data and then linearly transforming it 

to reduce covariance between features (17). In 

addition, the concrete variance remains the same. 

Using PCA (Principal Component Analysis), the 

features are fused. The study proposes MXGBoost 

(Modified eXtreme Gradient Boosting) based on 

statistical loss functions to classify monkeypox and 

other viral samples (chickenpox samples, smallpox 

samples) in order to acquire effective prediction 

results.  According to the work a coalesced CAD 

system is used to classify monkeypox using deep 

learning (18). Firstly, the given dataset images are 

pre-processed using a proposed fusion-based 

contrast enhancement method. A second step 

involves modifying and training six deep learning 

models: Vision Transformers (ViT), Shifted 

Windows (Swin) Transformers, ResNet-50, 

ResNet-101, EfficientNetV2, and ConvNeXt-V2. A 

third step involves acquiring and integrating the 

deep feature vectors from all the deep learning 

networks.  

Based on images of skin lesions, in the work 

proposed deep learning to diagnose monkeypox. 

Five pre-trained deep neural networks were used 

to test the dataset: GoogLeNet, Places365-

GoogLeNet, SqueezeNet, AlexNet, and ResNet-18 

(19). Choosing the best parameters was done using 

hyper parameters. F1-score, AUC, and 

precision/precision are performance metrics 

considered. The highest accuracy was achieved by 

ResNet18, which obtained 99.49%. A validation 

accuracy of more than 95% was achieved with the 

modified models. The results demonstrate that 

deep learning models such as the one proposed 

based on ResNet-18 are deployable and crucial in 

the fight against monkeypox.  

Research Gap 
There are several gaps to fill in application of deep 

learning to monkeypox diagnosis, even though 

existing research has made significant strides: 

Limited Multi-Disease Dataset Availability: 

Current systems mainly focus on single-disease 

datasets, restricting generalization. Similar 

symptoms include chickenpox, measles, and hand-

foot-and-mouth disease. 

Scarcity of Low-Volume Datasets: Deep learning 

models often struggle with insufficient data, 

particularly small datasets. When collecting large 

datasets is difficult in low-resource settings, 

accuracy and generalization are reduced. 

Absence of White Balance Correction:  There is 

a lack of attention to lighting conditions and image 

quality in many studies. AWBC (Automatic White 

Balance Correction) reduces color distortions and 

improves image clarity. 

Lack of Unified Segmentation for Multi-Disease 

Datasets:  Existing methods do not provide 

segmentation techniques for handling multiple 

diseases in a single dataset. Systems that 

differentiate among infections are difficult to build 

because of this gap. 

Inaccurate Disease Prediction: Monkeypox 

cannot be distinguished from other visually similar 

diseases by many systems. As a result, dataset 

diversity and segmentation strategies are limited. 
 

Methodology 
This work introduces an innovative approach to 

monkeypox detection using advanced deep 

learning techniques. Multi-scale attention-guided 

lesion segmentation, sophisticated image 

preprocessing, and state-of-the-art classification 

models form the core of the methodology. The 

Monkeypox Skin Lesion Dataset (MSLD v2.0) 

includes images of monkeypox, chickenpox, 

measles, cowpox, hand-foot-and-mouth disease, 
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and healthy skin. Using FMR (Flip, Mirror, Rotate) 

random image augmentation the work enhance 

dataset diversity and standardize image quality 

with Automated White Balance Correction. Multi-

scale attention-guided segmentation of skin 

lesions is the key innovation. A basic CNN, 

Inception V3, and the primary classifier, CoatNet, 

which combines convolutional and transformer 

architectures, are compared. With this 

comprehensive approach, monkeypox detection 

will be significantly improved, potentially leading 

to rapid diagnosis and outbreak management. 

Figure 1 shows the flow of the proposed work. 

Dataset 
Monkeypox Skin Lesion Dataset (MSLD v2.0) is a 

comprehensive collection of skin lesion images 

designed specifically for studying and detecting 

monkeypox and other skin conditions. Diversity 

and relevance to the current global health context 

make this dataset especially valuable (20). The 

dataset is described in detail here. Six classes of 

images are included in MSLD v2.0: 

• The monkeypox (MPox): Skin lesions 

characteristic of the infection. 

• Chickenpox: Varicella-zoster virus, often 

mistaken for monkeypox. 

• Measles: Virus-induced skin manifestations. 

• Cowpox: Infections caused by cowpox virus. 

• HFMD (Hand, Foot, and Mouth Disease): 

Common viral infection characterized by skin 

symptoms. 

• Healthy: Normal, unaffected skin images. 
 

 
Figure 1: Proposed Work Flow 

 

Using this multi-class structure, the work can 

develop a diagnostic approach that not only 

detects monkeypox but also differentiates it from 

other visually similar skin conditions.  The images 

in the dataset reflect the diverse presentation of 

these diseases across different populations based 

on skin tones, lesion stages, and imaging 

conditions. A variety of demographics and clinical 

settings is needed to train robust models. There 

are probably some imbalances in the dataset with 

certain conditions being rarer than others, even 

though the exact number is not specified. The use 

of stratified sampling and possibly class weighting 

or augmentation techniques to address imbalances 

is critical to the data handling and model training 

strategies. The sample dataset for the monkeypox 

is shown in Figure 2.
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Figure 2: Sample Dataset. (A) Mpox, (B) Chickenpox, (C)Measles, (D) Cowpox, (E) HFMD, (F) Healthy 

 

As in real-life clinical scenarios, MSLD v2.0 images 

vary in quality. It is possible that some images are 

high-resolution, well-lit photographs taken in 

controlled clinical environments, whereas others 

may be lower-quality snapshots taken by patients 

themselves. Image quality diversity underscores 

the importance of preprocessing steps like 

Automated White Balance Correction (AWBC). On 

the basis of this comprehensive and diverse 

dataset, it aims to develop a generalizable, 

accurate, and robust monkeypox detection system. 

Improved skin lesion classification may reduce 

misdiagnoses and improve diagnostic accuracy 

with multi-class datasets. 

Multi-disease datasets allow the model to 

differentiate diseases with similar visual features, 

improving its clinical relevance. This approach has 

several limitations and challenges. In multi-disease 

datasets, certain conditions are often 

underrepresented, resulting in biased 

performance. Chickenpox and monkeypox are 

visually similar, but if subtle differences are not 

captured, misclassification is more likely. 

Furthermore, training a model to handle multiple 

classes increases computational requirements and 

may lead to longer training times and overfitting.  

FMR Random Image Augmentation 
In deep learning algorithms, such as CNNs, image 

augmentation is vital. This technique creates 

numerous variations of the training data to enlarge 

the dataset. To train thoroughly with limited data, 

augmentation is essential. The methods like 

flipping, mirroring, and rotation, input scenarios 

can be significantly expanded. Due of the exposure 

to various visual perspectives in such datasets, 

models trained on them are more robust and 

generalizable. When object orientation is not fixed, 

mirroring can provide symmetrical perspectives 

that can be especially useful. In this approach, 

overfitting is reduced, model performance is 

improved, and generalization to unseen data is 

enhanced. Nevertheless, these augmentations 

must be contextually appropriate for the task, as 

they may distort important features in some cases 

(e.g., medical images). As a result, flipping, 

mirroring, and rotating enhance the training set 

and enhance the model's robustness. The image 

augmentation using FMR is illustrated in Figure 3. 

The figure shows the flipped, rotated and mirrored 

image of the dataset.
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Figure 3: Image Augmentation. (A) Original, (B) Flipped, (C) Mirrored, (D) Rotated 900 

 

Input: A set of input images, ImageSet = {I1, I2, ..., In}, Flip (Horizontal/Vertical): flip_horizontally, 

flip_vertically, mirror_axis (horizontal or vertical axis), rotation_range (e.g., from -180° to 180°) 

Output: A set of augmented images, AugmentedImageSet 

Algorithm FMR Random Image Augmentation 

• Initialize AugmentedImageSet = {} to store the augmented images. 

• Define augmentation parameters: flip_horizontally, flip_vertically, mirror_axis, and 

rotation_range. 

• For each image I in ImageSet: 

• If flip_horizontally: 

• I_flip_horiz = Flip(I, direction="horizontal") 

• Add I_flip_horiz to AugmentedImageSet 

• If flip_vertically: 

• I_flip_vert = Flip(I, direction="vertical") 

• Add I_flip_vert to AugmentedImageSet 

• If mirror_axis is defined: 

• I_mirror = Mirror(I, axis=mirror_axis) 

• Add I_mirror to AugmentedImageSet 

• Set angle = RandomValue(rotation_range) 

• I_rotated = Rotate (I, angle) 

• Add I_rotated to AugmentedImageSet 

• If flip_horizontally and mirror_axis: 

• I_combined1 = Rotate (Flip(Mirror(I, axis=mirror_axis), "horizontal"), angle) 

• Add I_combined1 to AugmentedImageSet 

• If flip_vertically and mirror_axis: 

• I_combined2 = Rotate (Flip(Mirror(I, axis=mirror_axis), "vertical"), angle) 

• Add I_combined2 to AugmentedImageSet 

• If flip_horizontally and flip_vertically: 

• I_combined3 = Rotate (Flip (Flip(I, "horizontal"), "vertical"), angle) 

• Add I_combined3 to AugmentedImageSet 

• Repeat the above steps for each image in the dataset. 

• Return the AugmentedImageSet. 

End Algorithm 
 

Algorithm 1: FMR Random Image 

Augmentation  
Algorithm 1 shows the Image augmentation. 

Random image augmentation with FMR (Flip, 

Mirror, Rotate) addresses several key challenges in 

developing accurate monkeypox detection models. 

Using this method, the work can effectively 

mitigate the problem of data scarcity, a common 

problem when dealing with relatively rare 

diseases such as monkeypox. Multiple variations of 

each original image are created by flipping, 

mirroring, and rotating, to increase diversity 
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without adding more real-world samples. The 

augmentation improves the models' 

generalizability by learning orientation-invariant 

features, as well as reducing the risk of overfitting. 

Automated White Balance Correction 

with Histogram Stretching (AWBCHS) 
The "White Lens Problem," a phenomenon where 

flash photography or specific lighting scenarios 

result in brilliant, white reflections on the skin, 

frequently hinders medical image processing, 

notably for skin lesion identification techniques. 

The presence of monkeypox affects skin lesion 

pictures negatively. Reasons to deal with this issue 

include: 

• A white glare can obscure details in skin 

lesions, such as texture, borders, and color 

variation, hindering accurate diagnosis. 

• Segmentation algorithms are hampered by 

bright spots interfering with the separation of 

lesion and healthy skin. 

• A monkeypox lesion and surrounding skin 

can appear white because of reflections, 

making diagnosis easier. 

• White lens problems may result in models 

relying on artifacts rather than actual lesion 

features. 

• Some images may be affected while others are 

not in an inconsistent dataset. 

• Mistaking a white glare for a lesion can result 

in an incorrect diagnosis. 

The Automatic White Balance Correction (AWBC) 

is included in preprocessing. By reducing the 

effects of white lenses, the technique normalizes 

lighting and color conditions. By avoiding imaging 

conditions, deep learning models don't suffer 

artifacts. Monkeypox detection is therefore more 

accurate and reliable in real-world imaging. 

Inconsistent lighting conditions require correction 

of the lens' color cast. By correcting white balance 

and enhancing contrast, automated methods like 

Gray World Assumption and Histogram Stretching 

can significantly improve image quality. These 

techniques work and their key benefits are 

explained here. 

Gray World Assumption 
Using this method, it is assumed that an image 

should be neutral gray on average. There are times 

when certain color channels (Red, Green, and Blue) 

dominate an image, resulting in an off-balanced 

appearance when the lighting is poor or there is a 

color cast (e.g., white lens problem). In Gray World 

Assumption, each color channel (R, G, B) is scaled 

to equal intensity to achieve a neutral gray. By 

balancing the colors, any unnatural color 

dominance is removed and the overall white 

balance is improved. 

Histogram Stretching 
Using Histogram Stretching, the contrast and 

dynamic range of an image can be enhanced after 

the white balance has been corrected. By 

spreading the pixel intensity values across the 

entire range (0 to 255), details become more 

visible. A YUV color space is created by separating 

luminance (brightness) from chrominance (color) 

information from the image. Only the luminance 

channel (Y) is stretched in histogram stretching, 

which enhances brightness and contrast while 

largely leaving colors unchanged. 
 

Input: image (RGB) 

Output: enhanced_image (RGB) 

Algorithm: AWBCHS 

• Load the image from file. image ← load_image("path_to_image") 

• Apply Gray World Assumption for white balance: 

• Calculate avgR ← mean_intensity(image[:, :, Red_Channel]) 

• Calculate avgG ← mean_intensity(image[:, :, Green_Channel]) 

• Calculate avgB ← mean_intensity(image[:, :, Blue_Channel]) 

• Calculate avgGray ← (avgR + avgG + avgB) / 3 

• Scale Red channel: image[:,:,Red_Channel] ← clip(image[:, :, Red_Channel] * (avgGray / avgR), 0, 

255) 

• Scale Green channel: image[:,:,Green_Channel] ← clip(image[:, :, Green_Channel] * (avgGray / 

avgG), 0, 255) 

• Scale Blue channel: image[:,:,Blue_Channel] ← clip(image[:, :, Blue_Channel] * (avgGray / avgB), 

0, 255) 

• Apply Histogram Stretching:  
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• Convert image to YUV color space: img_yuv ← RGB_to_YUV(image) 

• Perform histogram equalization on the Y channel: img_yuv[:, :, Y_Channel] ← 

equalize_histogram(img_yuv[:, :, Y_Channel]) 

• Convert the image back to RGB: enhanced_image ← YUV_to_RGB(img_yuv) 

• Return or display the enhanced image. return enhanced_image 

End Algorithm 
 

Algorithm 2: Automated White 

Balance Correction 
Algorithm 2 shows the automated white balance 

correction. Automated White Balance Correction 

begins by loading the image and applying the Gray 

World Assumption to correct white balance issues. 

To create a neutral gray, each channel's average 

intensity is calculated, then each channel's average 

intensity is adjusted to match that of the neutral 

gray. By neutralizing the color cast caused by 

improper lighting, color casts are removed. 

Following the white balance correction, the 

algorithm applies Histogram Stretching to enhance 

contrast. Image luminance channels are converted 

into YUV color space is shown in Figure 4. 

Improves contrast and brightness with histogram 

equalization. Color and contrast are improved by 

RGB conversion. 
 

 
Figure 4: White Balancing and Histogram Stretching. (A) Original Image with White Lens Problem, (B) 

After AWB (Gray World), (C) After Histogram Stretching 
 

Multi-Scale Attention-Guided Lesion 

Segmentation 
It is essential to segment images to detect 

monkeypox and improve diagnostic efficiency. By 

segmenting monkeypox lesions from healthy 

tissue, the technique can analyze key monkeypox 

indicators. Input to subsequent algorithms is 

cleaner and more targeted with this technique. 

Quantitative data on lesions, such as size, shape, 

and distribution, can also be analyzed. Using these 

metrics, monkeypox must be distinguished from 

other diseases. It also reduces false positives by 

distinguishing lesion boundaries from 

irregularities on the skin and image artifacts. 

Different lighting and skin tones can be accounted 

for by segmentation. Various skin lesion images 

need to be standardized. In deep learning, 

monkeypox is more accurately detected. 

This work, propose an integrated approach for 

segmenting lesions in medical images by 

integrating multiscale attention-guided 

techniques. Data representation is simplified by 

converting grayscale images to grayscale. CLAHE 

(Contrast Limited Adaptive Histogram 

Equalization) boosts the contrast. It improves 

contrast in localized areas to distinguish subtle 

lesions. The method filters lesions using multi-

scales after preprocessing. A Gaussian blur with 

different kernel sizes is applied to enhance multi-

scale features in the image. This method allows 

robust representation of features, which is vital to 

detecting lesions accurately. 

A mechanism utilizing adaptive thresholding 

follows in order to detect potential lesion areas. 

Adaptive thresholding isolates regions of interest 

by creating binary attention maps with substantial 

intensity variations. Edge detection is completed 

using the Canny edge detector for accurate 

segmentation. The segmented results are refined 

using post-processing techniques. Using 

morphological operations, such as closing, small 

gaps can be filled and edges smoothed. While 

contour area filtering can reduce small noises. This 
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process produces an accurate and noise-free 

segmented image. Multi-scale attention-guided 

lesion segmentation is effective when compared 

with original medical images. High precision lesion 

segmentation can be achieved using multi-scale 

and attention-guided techniques. 
 

Input: A medical image (e.g., MRI or CT scan) in color format. 

Output: Segmented lesion image. 

Algorithm: Multi-Scale Attention-Guided Lesion Segmentation 

      //Preprocessing 

• gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 

• Enhance contrast using CLAHE 

• Initialize CLAHE with a clip limit of 2.0 and tile grid size of (8, 8): clahe = 

cv2.createCLAHE(clipLimit=2.0, tileGridSize= (8, 8)) 

• Apply CLAHE to the grayscale image: enhanced = clahe.apply(gray) 

// Multi-Scale Filtering 

• Apply Gaussian blur with different kernel sizes: 

• Small scale blur: blur_small = cv2.GaussianBlur(enhanced, (3, 3), 0) 

• Medium scale blur: blur_medium = cv2.GaussianBlur(enhanced, (5, 5), 0) 

• Large scale blur: blur_large = cv2.GaussianBlur(enhanced, (7, 7), 0) 

• Combine the blurred images using weighted addition: 

• combined = cv2.addWeighted(blur_small, 0.5, blur_medium, 0.3, 0) 

• combined = cv2.addWeighted(combined, 0.8, blur_large, 0.2, 0) 

//Generate an attention map: 

• attention_map = cv2.adaptiveThreshold(combined, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, 

cv2.THRESH_BINARY, 29, 15) 

• edges = cv2.Canny(attention_map, 100, 200) 

• Define a kernel: kernel = np.ones((5, 5), np.uint8) 

• Apply morphological closing: closing = cv2.morphologyEx(edges, cv2.MORPH_CLOSE, kernel) 

• Find contours: contours, _ = cv2.findContours(closing, cv2.RETR_EXTERNAL, 

cv2.CHAIN_APPROX_SIMPLE) 

// Remove small contours 

• for contour in contours: 

• if cv2.contourArea(contour) < 100: 

• cv2.drawContours(closing, [contour], -1, 0, -1) 

• Return the final segmented image: 

• return closing 

End Algorithm 
 

Algorithm 3: Lesion Segmentation 

using Multi-Scale Attention Guide 
Following are the key steps in the algorithm: 

• A grayscale conversion is followed by 

Contrast Limited Adaptive Histogram 

Equalization (CLAHE). For preprocessing, the 

contrast between lesions and healthy skin is 

enhanced. 

• Various kernel sizes are used in Gaussian 

blurring to achieve multi-scale effects. This 

technique, lesion features can be captured at 

multiple levels of detail. 

• By combining blurred images with weighted 

additions, fine details can be preserved.  

• An adaptive thresholding technique 

generates an attention map. This reduces 

background noise and irrelevant features by 

focusing the algorithm on lesion-prone areas. 

• Lesion boundaries are determined using a 

method called Canny edge detection. Using 

this method, one can precisely define the 

contours of an abnormality of the skin. 

• After segmentation, morphological 

operations refine the results. To close small 

gaps between detected lesions, an operation 

is performed. The contour area also 

eliminates false positives and noise. 

With multiple scales of lesion features, the 

algorithm is robust to changes in appearance and 
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size. The mechanism focuses on relevant images, 

increasing accuracy and efficiency. Monkeypox can 

be more accurately detected using this 

segmentation method. The segmentation results 

are illustrated in Figure 5. Using segmented 

images, classification algorithms or quantitative 

assessments of lesion characteristics can be 

performed. Algorithm 3 shows the Lesion 

Segmentation using Multi-Scale Attention Guide. 

Figure 5(A) shows the Original Image and Figure 

5(B) shows the segmented Lesion.  
 

 
Figure 5: Segmentation of Lesion. (A) Original Image, (B) Segmented Lesion 

 

Disease Prediction 
For disease forecasting, the work applied and 

compared three advanced deep learning tools: a 

simple CNN, Inception V3, and COATNet. The work 

trained each model on a specially prepared dataset 

to effectively sort images of skin conditions. 

Dataset Split 
The work initially drew upon the Monkeypox Skin 

Lesion Dataset, version 2.0, which includes various 

images of skin rashes such as monkeypox, 

chickenpox, measles, cowpox, and hand-foot-and-

mouth disease. To guarantee a thorough and 

reliable analysis, the data was meticulously 

divided into subsets for a robust model evaluation. 

Dataset converted 70% of the dataset is the 

training set. Test set accounts for 30% of the 

remaining 30%. A stratified sampling technique 

was used to ensure fair data collection. Each class 

has the same number of samples in training and 

test sets. The result is a well-representative class 

system that prevents bias. The data is split with a 

random seed for reproducibility. The same steps 

can be used if someone else wants to do the same 

experiment in the future. 

CoAtNet 
Using CoAtNet, combines the strength of 

convolutional neural networks (CNNs) with the 

strength of transformers. The image classification 

models can be enhanced by combining both 

strengths. With this architecture, local patterns are 

captured with convolutional operations, while 

global context is captured with attention 

mechanisms. In the CoAtNet system, the core 

principle is combining CNNs with Transformers to 

perform depthwise convolutions. This 

combination of approaches is motivated by a 

number of strengths: 

Convolutional Layers: An inductive bias can be 

captured in a convolutional layer, which can result 

in better generalization in scenarios with limited 

data. Local spatial patterns are used as inputs in 

convolutional layers to capture local spatial 

patterns in data. An edges and textures are 

detected by applying filters to regions of the image 

called receptive fields. By concentrating on 

localized features, convolutional layers are 

particularly well suited for extracting essential 

information from small patches of an image. 

Depth Wise Convolution: An aggregated field is 

formed by applying a fixed kernel. Based on input 

features, X∈RH×W×CX, where H is the height, 𝑊 is the 

width, and 𝐶 is the number of channels, each 

channel c is convolutioned with a different filter 𝐾𝑐, 

resulting in an output feature map 𝑌. The 

depthwise convolution at position (i,j) for channel 

c is given by: 

 
Where, kH and kW are two dimensions to a 

convolutional kernel: its height and width. Km,n,c_ 

the kernel value for channel c, at position (m,n). 

In this operation, local spatial information is stored 

by aggregating features within a small, localized 

area of the image (referred to as the receptive 

field) in order to capture local spatial information. 

The reason why depthwise convolutions are 

[1] 
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efficient is that each channel's filter operates 

independently, so fewer computations are 

required than with traditional convolutions. 

Although depthwise convolutions are useful for 

capturing local context within an image, they may 

not be as effective at capturing long-range, image-

wide dependencies. 

The inductive bias of these layers is also 

introduced as they are constructed with the 

assumption of the data's structure (i.e., that local 

features are important in the data). Convolutional 

networks have the advantage of being efficient and 

able to generalize well, especially in instances 

where there are limited data sets. Essentially, this 

means that they are able to learn from fewer 

examples because their structure is ideal for 

analyzing local patterns, so they can learn from 

fewer examples. 

Self-Attention Layers: The self-attention layer is 

capable of modeling global dependencies and has a 

higher capacity than other layers, which makes it a 

great choice when it comes to dealing with large 

datasets. Alternatively, self-attention layers are 

designed to handle global dependencies more 

intelligently. A spatial relationship is analyzed 

across all spatial positions rather than just within 

a single image instead of focusing on local patterns. 

It detects long-range dependencies using pairwise 

relationships between any two points. A large and 

complex dataset requires this to understand 

better. Furthermore, the model is capable of 

handling information and modeling complicated 

patterns, making it particularly useful when 

scaling up. This combination improves 

generalization and scalability of CoAtNet by 

handling various data sizes. In CoAtNet, attention 

mechanisms are combined with convolutional 

layers. As a result of this observation, depthwise 

convolutions and self-attention can be seen as 

complementary operations that can be used to 

process spatial information, as follows: 

To unify these two processes, CoAtNet uses 

relative positional embeddings to compute 

attention, and in addition to that, it also 

incorporates convolutional kernels into the 

computation of self-attention, thereby combining 

both operations. With this approach, the model can 

benefit from both translation equivariance of 

convolution and attention based models while 

maintaining the benefits of both. 
 

Input: Image dataset D= {(x1, y1), (x2, y2)..,(xn,yn)} where xi is an image and yi is the corresponding label, 

Number of stages S0,S1,S2,S3,S4  for CoAtNet, Number of layers in each stage L0,L1,L2,L3,L4. Model hyper 

parameters (learning rate, batch size, epochs, etc.). 

Output: Trained CoAtNet model with image classification predictions. 

Algorithm: CoAtNet for Image Classification 

▪ Initialize the CoAtNet architecture with the following components: 

o A convolutional stem in Stage S0S_0S0 to process input images and extract low-level 

features. 

o Subsequent stages S1, S2  with depth wise convolutional layers (MBConv) to capture 

local spatial features. 

o Later stages S3, S4  with self-attention layers to capture long-range dependencies and 

global context. 

o Employ relative positional encoding in the attention layers to retain translation 

equivariance. 

▪ Initialize model parameters θ (weights for convolution and attention layers). 

▪ For each input image x∈: 

• Stage S0: Convolutional Stem 

o Apply a series of convolutional operations to the input image: f0=ConvStem(x)  

o Down-sample the image to reduce spatial dimensions while increasing the number of 

channels. 

• Stage S1, S2: Depth wise Convolution Layers 

o For each layer l∈{1,2}: fl+1=DepthwiseConv(fl)  

o Use MBConv blocks with squeeze-and-excitation (SE) modules to extract local patterns, 

reduce spatial size, and increase channel depth. 

• Stage S3, S4 : Self-Attention Layers 
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o For each layer l ∈ {3,4}: fl+1=RelativeAttention(fl)  

o In the self-attention mechanism, compute pairwise relationships between all spatial 

positions: 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑞, 𝑘, 𝑣) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑞𝑘𝑇𝑑𝑘)  

o where q, k, and v are the query, key, and value matrices from the input features, and dk 

is the dimension of the key. 

o Include relative positional encoding to incorporate spatial information into the 

attention mechanism. 

▪ Final Stage: Global Pooling 

o Apply global average pooling to the final feature map to obtain a fixed-size 

representation: fglobal=GlobalAveragePooling(f4) 

▪ Feed the globally pooled features into a fully connected layer to produce logits for the 

classification task: ypred=Softmax(Wfglobal+b) where W and b are the weights and biases of 

the fully connected layer. 

▪ Compute the loss L(ypred,ytrue) using cross-entropy loss between the predicted class 

probabilities and the true labels ytrue. 

▪ Compute gradients of the loss with respect to model parameters θ (including both convolution 

and attention layers) using backpropagation:𝜕𝐿/𝜕𝜃  

▪ Update the model parameters θ using an optimizer (e.g., AdamW) based on the computed 

gradients:  θ←θ−η∂L∂ where η is the learning rate. 

▪ Repeat Steps 2-4 for each batch of images in the dataset over multiple epochs. 

▪ Apply data augmentation (e.g., RandAugment, MixUp) and regularization techniques (e.g., 

stochastic depth, weight decay) to improve generalization. 

▪ Once the model is trained, use the forward pass (Steps 2-3) on unseen test images to generate 

predictions: ytest=Softmax(Wfglobal) 

▪ Classify the image based on the predicted class with the highest probability. 

▪ Evaluate the trained model on a validation/test set using accuracy or other relevant metrics 

(e.g., top-1 or top-5 accuracy). 

▪ Fine-tune or further train the model if necessary based on the evaluation results. 

End Algorithm 
 

Algorithm 4: CoAtNet for Image 

Classification 
Algorithm 4 shows the COATNET. The CoAtNet 

network is structured in a similar way to 

traditional ConvNet networks with multiple 

stages. An architecture is divided into multiple 

stages in which the resolution of the input feature 

maps is gradually reduced over the course of the 

design: 

• The S0 stage includes a convolutional stem, 

which performs the initial down sampling of 

the image as well as the extraction of its 

features. 

• During the following stages, S1 to S4, the 

depth wise convolutions are alternated with 

attention blocks (in the earlier stages) as well 

as the attention blocks themselves. The 

spatial resolution decreases at each stage, as 

well as the number of channels increases as 

well. 

Based on the MBConv structure, the convolution 

blocks that will be used are based on depth wise 

separable convolutions, which works well in terms 

of efficiency. The attention blocks incorporate a 

mechanism that allows relative attention to be 

determined, and this mechanism scales effectively 

as input size increases. Using relative self-

attention, CoAtNet enhances the standard self-

attention mechanism by incorporating 

information about the relative positions of image 

patches into its attention mechanism, which is an 

enhanced version of the standard self-attention 

mechanism. The relative encoding of the image 

patches enables the attention mechanism to be 

able to take into account the relative spatial 

relationships between them, making it more 
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efficient when capturing both local and global 

dependencies within an image patch. In summary, 

the following steps can be taken to complete the 

process: 

• Taking each pixel from the feature map into 

account, CoAtNet computes the pairwise 

attention between that pixel and every other 

pixel on the feature map. 

• The attention score incorporates relative 

positional information into the model, which 

is essential to maintain translation 

equivariance, one of the desirable properties 

of convolutional models. 

A significant benefit that this mechanism provides 

is that it improves the ability of the model to 

generalize, especially in tasks where spatial 

patterns repeat across multiple parts of an image. 

A basic description of the process involved in 

training and using CoAtNet for image classification 

can be found in this algorithm. The course covers 

the initialization of the hybrid architecture, a 

forward pass through both the convolution layer 

and the attention layer, as well as backpropagation 

for parameter updates and inference for making 

predictions based on the data.To ensure reliability 

in diverse clinical settings, CoAtNet must be 

evaluated for its robustness to variations in image 

quality, skin tone, and lesion presentation. 

Simulate real-world image quality discrepancies 

with simulated datasets with controlled 

resolutions, lighting conditions, and noise. 

Datasets with diverse demographic 

representations enable differentiating 

performance across skin tones. The lesion 

presentations should vary in size, shape, color, and 

stage. Measure the resilience of the model by 

measuring its robustness metrics. Additionally, 

data augmentation methods like adding noise and 

simulated lighting changes during training, as well 

as preprocessing methods like Automated White 

Balance Correction, help ensure the model remains 

high performing. 

In CoAtNet, depthwise convolutions and self-

attention combine to create complexity. Due to 

pairwise token interactions, the convolutional 

layers contribute complexity proportional to the 

spatial dimensions and channels of the input. The 

result is an overall complexity that balances local 

feature extraction with global context modeling: 

𝜊𝐶𝑜𝐴𝑇𝑁𝑒𝑡 = ∑ 𝐾𝐻 ∗ 𝐾𝑊 ∗ 𝐶𝑖𝑛 ∗ 𝐻 ∗  𝑊 +

∑ (𝑁2 ∗ 𝐷)                                                  [2] 

Where KH, KW are Kernel dimensions, KH input channels,  

H, W Saptial dimensions, N number of tokens,  

−Embedding Size.  
 

Results and Discussion  
The predictive ability of machine learning models 

to identify monkeypox is typically measured using 

a variety of metrics such as accuracy, precision, 

recall, F1-score, and AUC-ROC. The following 

metrics help determine how well a model can 

distinguish between monkeypox cases and non-

cases from input features, which may include 

clinical information, demographic information, 

and possibly image data for visual diagnosis (such 

as skin lesions), to determine whether it can make 

a successful prediction model for monkeypox. 

 

 
Figure 6: Pre-Processing Metrics for Different Values. (A) Mean Squared Error (MSE), (B) Peak Signal-to-

Noise Ratio (PSNR), (C) Structural Similarity Index (SSIM) 
 

With three key image quality metrics: Mean 

Squared Error (MSE), Peak Signal-to-Noise Ratio 

(PSNR), and Structural Similarity Index (SSIM), 

two image correction techniques are compared as 

shown in Figure 6, AWB Correction (Auto White 

Balance Correction) and Histogram Stretching. A 

lower MSE performs better with AWB Correction 

than with Histogram Stretching, which exhibits 



Bamini et al.,                                                                                                                                                Vol 6 ǀ Issue 1 

1434 
 

more distortion than a higher MSE. The PSNR for 

both techniques is nearly identical, with AWB 

Correction slightly outperforming, reflecting a 

marginally higher signal-to-noise ratio. In terms of 

SSIM, which measures perceived image quality, 

AWB Correction yields a significantly higher score, 

indicating that it retains structural similarity to the 

original image better than Histogram Stretching. In 

terms of maintaining image quality, AWB 

Correction appears to outperform Histogram 

Stretching. Figure 6 shows the Pre-Processing 

Metrics. 
 

Table 1: Performance Evaluation 

Classifiers Accuracy Error Rate Precision Recall F1-Score 

CNN 87.96 12.04 84.87 89.32 87.0381583 

Inception V3 91.25 8.75 89.43 92.44 90.9100918 

Coat Net 95.42 4.58 92.56 95.74 94.1231482 
 

Table 1 shows the performance evaluation. The 

Comparison of accuracy, error rate, precision, 

recall, and F1-Score of CNN, Inception V3, and Coat 

Net is shown in Table 1. An F1-Score of 87.04 

means CNN's accuracy is 87.96%, with an error 

rate of 12.04%, precision is 84.87%, recall is 

89.32%, and recall is 89.32%. As a result, Inception 

V3's accuracy is 91.25% and error rate is 8.75%. A 

higher F1-Score of 90.91% can be achieved with 

greater precision (89.43%) and recall (92.44%). 

Among all models, Coat Net performs the best, with 

an accuracy of 95.42% and an error rate of 4.58%. 

F1-Score of 94.12 indicates superior performance 

in balancing precision and recall with 92.56% 

precision and 95.74% recall. The representation of 

accuracy and error rate is illustrated based on the 

evaluation as shown in Figure 7. 

 

 
Figure 7: Accuracy and Error Rate 

 

This machine's high level of accuracy and its high 

F1-score suggest that it offers a good balance 

between precision and recall as shown in Figure 8, 

which makes it ideal for medical diagnosis tasks 

that require a balance between precision and 

recall, such as those involving positive and 

negative diagnoses, which can result in serious 

consequences (21). As a result, Inception V3 shows 

marked improvements when compared to the 

basic CNN model, which is in line with the more 

sophisticated architecture that is used in the 

software, which makes it possible to achieve such 

improvements. As a result, the performance 

difference between Inception V3 and CoatNet is 

notable, indicating that the hybrid architecture of 

CoatNet (which combines CNNs with 

Transformers) would be particularly well suited to 

this task due to the hybrid architecture of CoatNet. 
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Figure 8: Precision, Recall F1-Score 

 

As good as the basic CNN is, it has a significant lag 

behind the more advanced architectures, even 

though it performs reasonably well. The results of 

this study indicate the importance of using state-

of-the-art models for complex image classification 

tasks, such as the detection of monkeypox lesions, 

which are exceedingly complex (22). There is no 

question that the results of this study support the 

choice of CoatNet as the primary model for this 

study, as it shows superior performance when it 

comes to identifying monkeypox lesions while 

minimizing errors and producing accurate results. 

Compared to other well-established models such 

as Inception V3, hybrid architectures are 

significantly better in terms of medical image 

analysis tasks than other well-established models. 

Figure 9 shows the ROC curve. 

 

 
Figure 9: ROC Curve 

 

A transparent and understandable decision-

making process is essential for CoAtNet's adoption 

in clinical settings. A technique called Grad-CAM 

(Gradient-weighted Class Activation Mapping) can 

be used to visualize the regions of an image that the 

model focuses on when making predictions. 

Additionally, saliency maps and Layer-wise 

Relevance Propagation (LRP) can highlight how 

specific patterns in skin lesions contribute to 

diagnosis. Further understanding can be gained by 

revealing global dependencies in the transformer 

layers. SHAP (SHapley Additive Explanations) or 

LIME (Local Interpretable Model-agnostic 

Explanations) can also elucidate input features' 

contribution. Integrating models into clinical 

workflows can be enhanced through explainability 

dashboards or real-time decision trails. 

Models using AI for disease diagnosis, such as 

CoAtNet, can be biased due to underrepresentation 

of certain skin tones, lesions, age groups, or 

geographic regions. This bias can 

disproportionately impact marginalized 

communities and reduce the model's 

generalizability. Relying on limited datasets may 

worsen health disparities by favoring more 

prominently represented conditions or 

demographics. Ethical concerns include 

misdiagnosis, loss of trust in AI systems, and 
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increased healthcare inequalities. To address these 

issues, it is crucial to use diverse, representative 

datasets and incorporate fairness measures during 

model training. Transparent reporting of model 

limitations and ongoing clinical oversight are also 

essential to ensure ethical standards and equitable 

healthcare delivery. 

The proposed multi-scale attention-guided lesion 

segmentation technique and the CoatNet-based 

classification approach that the work propose for 

monkeypox detection represent significant 

advances over the existing systems in the 

literature that have been used so far. First of all, 

with FMR (Flip, Mirror, Rotate) Random Image 

Augmentation, the work is addressing limitations 

in the dataset size that have been seen in previous 

studies. As reported (1), augmented the sample 

size using data augmentation, but did not specify 

their methodology. An improved generalization of 

the model may result from the process of providing 

a more robust augmentation strategy. 

The preprocessing pipeline has been enhanced 

with AWBC (Automated White Balance 

Correction), a new addition not found in most 

existing studies. This technique standardizes 

image quality across diverse datasets by 

addressing the white lens problem. The work (14) 

demonstrated, variability in image quality was a 

limiting factor in their studies. This applies 

particularly to studies with variable image quality. 

As far as detecting lesion boundaries is concerned, 

the multi-scale attention-guided lesion 

segmentation algorithm is clearly a significant 

advance over traditional segmentation methods. 

The work (8), which focused solely on 

classification without explicitly segmenting lesion 

areas, this approach isolates lesion areas with 

greater precision and accuracy. During the 

segmentation step, the model is enhanced in its 

ability to focus on relevant features, which could 

lead to an increase in the accuracy of the 

classification. 

As far as performance is concerned, the CoatNet 

model performs superior to traditional CNNs and 

even more advanced architectures like Inception 

V3 as far as classification is concerned. The study 

was (2) reported an accuracy of 98% using 

EfficientNetB3, while the work was able to achieve 

95.42 % accuracy using CoatNet. There is no 

question that the raw accuracy figure of the model 

is slightly lower, but given the complexity of the 

multi-class classification task in the study. 

It is due to its hybrid nature, which combines CNN 

and transformer architectures, that CoatNet is 

capable of capturing both local as well as global 

features more effectively. The work (10) used a 

single-architecture approach, the MobileNetV2, 

which achieved 99% accuracy on a simpler 

dataset, but this approach was disadvantaged by 

the fact that it was a single-architecture approach. 

A further benefit of the approach is that it 

addresses the need for models that can be 

deployed in resource-limited settings, an issue that 

(2) who raised the need for such models. Despite 

maintaining high accuracy, the work has designed 

the model with computational efficiency in mind, 

so it can be used in a variety of healthcare 

environments, as it is designed with high accuracy 

in mind. In addition, the study has been 

distinguished from many other studies that have 

used binary classification in order to differentiate 

monkeypox from non-monkeypox, due to the fact 

that it utilized the MSLD v2.0 dataset, which 

includes a wide range of skin conditions besides 

monkeypox. By using advanced segmentation and 

classification techniques, this work utilizes a multi-

class approach (12), allowing for a more realistic 

and applicable model. Table 2 shows the 

comparison with existing work. 

 

Table 2: Comparison with Existing Work 

Feature Existing Work Proposed System (Novel-

Contribution) 

Multi-Disease 

Dataset 

 Concentrates primarily on single-

disease datasets, which makes co-

detection difficult. This work has a 

single study diseases (1,12) 

 It includes multi-disease datasets 

(Monkey pox, Chickenpox, Measles, 

Cowpox, HFMD). 

Data 

Augmentation 

 Using flipping and rotating techniques 

does not address significant data 

scarcity. The work (2) used basic 

augmentation 

 FMR (Flip, Mirror, Rotate) Random 

Image Augmentation increases dataset 

diversity. Additionally, it improves 

model generalization. 
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Handling Small 

Data Size 

In many methods, data augmentation 

techniques are all that is needed to 

expand a small dataset. The work (3) 

use limited datasets. 

A robust model uses FMR 

Augmentation coupled with advanced 

generative methods. 

White Balance 

Correction 

Lighting conditions vary, causing 

inconsistencies in image quality. 

Lighting variations are rarely 

addressed in studies (5). 

Automated White Balance Correction 

(AWBC) improves image clarity and 

normalizes lighting conditions. 

Segmentation of 

Multi-Disease 

Images 

Segmentation limited to diseases 

without considering multiple diseases. 

For multi-disease datasets, This work 

(12) address segmentation. 

Proposes Multi-scale Attention-guided 

Lesion Segmentation, enhancing 

diagnostic accuracy across multiple 

diseases. 

Model 

Architecture 

CNN-based models (e.g., ResNet, 

MobileNet) are used individually, which 

limits local/global feature extraction.  

CoAtNet combines CNN and 

transformers for better local and 

global feature extraction. 
 

The hybrid architecture's unique strengths are 

shown by skin lesions. Models such as EfficientNet, 

known for its scalable efficiency, demonstrate high 

accuracy in skin lesion classification, but often lack 

the ability to capture both local and global features. 

ViTs, on the other hand, excel at modeling global 

dependencies, but are computationally expensive 

and require large datasets. MobileNet variants 

provide lightweight architectures for resource-

constrained deployments, but they may 

compromise precision. With CoAtNet, 

convolutional layers extract localized patterns 

while transformers analyze global features. 

Compared to EfficientNet-B3 and Inception V3, its 

accuracy (95.42%) and F1-score are higher. Both 

diagnostic accuracy and computational efficiency 

can be improved by CoAtNet. 

CoAtNet-based approaches, although promising, 

have a few limitations. The use of high-quality, 

labeled datasets may limit generalizability, 

especially in resource-constrained regions. 

Because of its hybrid CNN-transformer 

architecture, the model may be difficult to deploy 

on low-power or edge devices. Due to potential 

biases in the dataset, CoAtNet's performance may 

vary across demographic groups.  Additionally, 

image-based diagnosis overlooks clinical context 

or symptoms that are not visible visually. A hybrid 

model also presents interpretability challenges 

due to its complexity. Finally, the approach's 

reliance on preprocessing techniques may 

introduce variability if not standardized across 

clinical settings, affecting reproducibility. For 

robust and equitable deployment, these limitations 

must be addressed. 

A real-world clinical comparison with expert 

dermatologists is crucial to evaluating CoAtNet's 

diagnostic performance. The model is evaluated 

for its accuracy, precision, and recall under 

variable conditions, ensuring its practical utility. 

Cohen's kappa or concordance correlation 

coefficient should be used to assess agreement, 

and any discrepancies should be investigated to 

identify gaps in the algorithm's generalization or 

clinical nuances. Comparison of this model 

validates its robustness and potential as a clinical 

decision aid. 
 

Conclusion 
Advanced deep learning techniques are capable of 

accurately detecting monkeypox from skin lesion 

images, according to the proposed research. 

CoAtNet-based models provide superior 

performance over traditional CNN and Inception 

V3 models because they incorporate a Random 

Image Augmentation method and an Automated 

White Balance Correction method. By using the 

model, monkeypox detection accuracy, precision, 

and recall have been improved by 95.42 %, 

92.56%, and 95.74%, respectively. A number of 

factors have contributed to the successful outcome 

of the work. FMR Random Image Augmentation 

overcame the limitations of limited training data 

and enhanced the model's ability to generalize 

across different types of lesions. Furthermore, 

Automated White Balance Correction improved 

image quality by reducing lighting variations and 

color casts that could potentially confound 

diagnosis. Due to its hybrid architecture that 

combines the strengths of CNNs and transformers, 

CoAtNet is particularly effective at detecting both 
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local and global features of skin lesions. Infectious 

disease outbreaks can be controlled by AI-assisted 

diagnostics, according to these studies. The 

available models for detecting monkeypox that are 

rapid, noninvasive, and accurate. By improving 

early detection efforts, it can reduce disease spread 

and improve patient outcomes. 

Including multi-modal imaging, such as 

dermoscopy and radiography, is planned. An in-

depth look at the infection could improve the 

diagnostic process.  Advanced generative models, 

such as GANs, address the scarcity of data. A 

further aspect of optimizing models for real-time 

deployment in remote healthcare setting is the 

need to make them suitable for mobile and low-

resource devices so that they can be used in real-

time. It is also likely that by integrating noise-

reduction algorithms and denoising algorithms 

into the AI pipeline, performance would be 

improved when dealing with data of low quality or 

that is noisy due to their lack of noise reduction 

techniques. To conclude, it is crucial that datasets 

are expanded so they include a wide range of racial 

and geographic diversity in order to ensure the 

models are capable of performing effectively 

across a wide range of populations, which will 

enhance the generalizability and fairness of the 

proposed solutions. 
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