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Abstract 
 

Internet of Things (IoT) technology and its applications have new cyberattacks requiring powerful and effective 
cybersecurity solutions. Although machine learning (ML) techniques are promising to defend cyberspace, most of 
them depend on predefined hyperparameters, which restrict their effectiveness in defending against a dynamic and 
evolving threat landscape. To tackle this, we introduce a learning-based framework, subsequently, the integration of an 
improved hyperparameter optimization technique enhances cybersecurity in IoT domains. Specifically, it exploits an 
Enhanced Bayesian Optimization (EBO) approach for the optimization of ML models used in attack detection. This 
technique captures adequate features like tuning covariance hyperparameter dynamically, acquisition functions, 
parallelization, and cost modeling. In this paper, we propose an algorithm called Learning-based Method with 
Hyperparameter Optimization for Cyber Attack Detection (LbMHO-CAD), which combines EBO and different ML 
models, such as Decision Tree, K-Nearest neighbors, Logistic Regression, Support Vector Machine, and Random Forest. 
These models were evaluated for their generalization ability in detecting a range of cyberattacks, using the UNSW-NB15 
benchmark dataset as training data. The experimental results show that the proposed framework 111 14 achieves a 
maximum accuracy of 97.91% by outperforming the state-of-the-art methods and is 112 able to overcome the issues 
regarding the data noise and heterogeneity of IoT systems. The proposed research bears a significant generalizability 
score needed to enhance IoT security under the merged hyperparameter tuning approach and opens avenues for 
future work on model deep learning integration along with rigorous testing on all-inclusive datatypes. 

Keywords: Cyber Security, Enhanced Bayesian Optimization, Hyperparameter Tuning, Internet of Things, 
Machine Learning. 
 

Introduction 

Enabled by the Internet of Things (IoT), a range of 

applications can be achieved through 

communication and access between physical and 

digital objects. For example, smart homes, smart 

cities, smart transit, and intelligent healthcare 

systems. This unprecedented application and 

heterogeneity in protocols, devices, and 

applications have been leading to vulnerabilities to 

cyber-attacks. In addition, global standards are 

insufficient for IoT applications, which is why IoT 

devices are vulnerable to security threats. At the 

same time, artificial intelligence (AI) has sprouted 

as technology with the potential to solve the 

troubles of the real world. Different approaches, 

ranging from deep learning (DL) to machine 

learning (ML), were greatly used in many fields. 

AI-powered approaches have been ubiquitously 

adopted to solve challenges in cybersecurity and 

have proven their utility in making cyberspace 

more secure. This has led to substantial research 

on the use of AI for the purpose of cybersecurity. 

ML techniques have been used to analyze the data 

from IoT sensors for abnormal patterns to identify 

the possibility of cyber-attacks. Deep learnings 

have employed advanced neural networks to 

accommodate massive traffic in industrial control 

systems and learning-based methods have been 

envisaged for cyber-attack detection. ML models 

based on semi-supervised learning have also been 

deployed to detect distributed attacks in 

cyberspace, and they exhibit a good performance 

when the number of training sample is 

insufficient. The dynamic assessment of risks in 

IoT applications has been explored with the 

implementation of AI-based methods, which may 

improve security measures.  
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Various ML approaches are investigated in 

literature to secure cyberspace. But it turns out 

that ML models depend on training data and need 

hyperparameter tuning to attain better 

performance. With its ability to analyze massive 

amounts of data and improve security measures, 

the potential for machine learning in the IoT has 

received a lot of interest. Different Machine 

Learning Methods for IoT Data Analysis provide an 

overview of insights for processing IoT data in an 

efficient way (1). Many research studies also 

investigated cybersecurity algorithms based on 

machine learning and deep learning, especially for 

intrusion detection systems and anomaly 

detection mechanisms in IoT (2-4). Semi-

supervised and ensemble learning-based 

frameworks have been highlighted as necessary to 

manage evolving cyber threats in industrial 

control systems and IoT networks (5–7). Deep 

learning has been rigorously reviewed for its role 

in IoT security in the context of network anomaly 

and cyberattack detection (8–10). Intrusion 

detection approaches have been proposed, which 

use federated learning and centralized models to 

enhance the security of IoT-based applications 

(11). Deep learning has also successfully detected 

malevolent botnets in IoT networks using diverse 

approaches (12). Moreover, studies have 

investigated the applications of cybersecurity 

frameworks based on machine learning and 

blockchain technology to improve privacy and 

security for IoT systems (13-15).  

The article emphasizes machine learning 

techniques for predictive maintenance in 

manufacturing and industrial IoT and shows that 

real-time data analytics can lead to proactive 

maintenance (16). The significance of big data 

analytics and IoT cybersecurity has also been 

examined as part of data-driven approaches (17). 

Also, novel deep learning based methods have 

been researched to detect DDoS attack in IoT 

networks, suggesting the potency of artificial 

intelligence techniques towards addressing the 

problem of cyber-attacks (18-20). A lot of work has 

been done to analyze datasets that can be used for 

detecting intrusions in the network, and one of the 

most popular is the UNSW-NB15 dataset, which is 

now being used broadly to compare many 

cybersecurity models (21-23). Integrating 

machine learning with blockchain has been 

studied as a basis for privacy-preserving security 

frameworks, especially in smart cities and Internet 

of Things (IoT) applications (24). Choice of feature 

extraction and machine learning techniques have 

also been analyzed to showcase potential 

improvements in intrusion detection in both 

network and host-based anomaly detection (25-

27). Also, there is a growing interest in using these 

approaches in cybersecurity and IoT security to 

improve machine learning models (28-30). 

Gaussian processes have been utilized to optimize 

deep learning architectures, with promising 

results in enhancing classification accuracy and 

model efficiency (31). Several studies also 

discussed and evaluated attention-based neural 

networks in terms of their potential application for 

detecting and classifying cybersecurity threats in 

IoT environments (32-34). 

 In conclusion, machine learning and deep learning 

techniques for IoT security are rapidly becoming 

mainstream in response to the growing need for 

cyber risk analytics, as cyber-attacks threaten the 

robustness of smart infrastructure (35-37). Hybrid 

security frameworks combining deep learning 

with blockchain and federated learning methods 

have been proposed as prospective future research 

directions (38-40). Another recent related work 

investigates the use of deep learning approaches 

for network anomaly detection and intrusion 

prevention for IoT security (41). The proposed 

Automatic DDoS detection frameworks utilizing 

hybrid deep learning models have enhanced 

performance in detecting and mitigating cyber 

threats (42). Bayesian optimization-based 

hyperparameter tuning novel techniques have 

been suggested for the enhancement of the 

efficiency of deep learning models in the field of 

cyber security (43). Convolutional neural 

networks and attention mechanisms are 

integrated for the analysis of cyber threats and 

achieve 48.09% accuracy (44). Moreover, deep 

learning methods have been explored to secure IoT 

systems in smart agriculture, suggesting its 

applicability to secure innovative farming systems 

against cyber vulnerabilities (45).  

In Table 1, we summarize the existing literature on 

IoT cybersecurity frameworks to examine the 

utilized methodologies, significant findings, and 

research gaps.  

These studies provide evidence of notable 

progress, they also highlight the importance of 

developing strong hyperparameter optimization 



Babu et al.,                                                                                                                                                Vol 6 ǀ Issue 1 

1395 
 

methods and universal frameworks capable of 

addressing the diverse problems presented in IoT 

settings, including data heterogeneity, noise, and 

scalability. 
 

Table 1: Summary of Literature Review 

Reference Method Key Findings Research Gaps 

(1) ML models for IoT 

network traffic 

analysis 

ML models can monitor 

network flows and detect 

inconsistencies effectively. 

Focused on detecting 

vulnerabilities; lacks robust 

hyperparameter optimization. 

(2) Anomaly detection 

using IoT sensor 

data with ML 

techniques 

Detected anomalies in IoT 

sensor data, demonstrating the 

potential of supervised learning 

for attack detection. 

Did not explore unsupervised or 

semi-supervised learning; lacks 

evaluation on noisy and 

heterogeneous data. 

(3) Deep learning for 

industrial control 

systems 

Used advanced DL techniques 

for detecting cyber-attacks in 

industrial IoT environments. 

Lacks scalability to other IoT use 

cases; does not address 

hyperparameter tuning 

challenges. 

(4) Semi-supervised 

ML for distributed 

attack detection 

Semi-supervised approaches 

showed promise for limited 

training samples in distributed 

IoT systems. 

Limited evaluation on real-world 

datasets; lacks advanced 

optimization techniques for 

improving performance. 

(17) Introduced Edge-

IIoTset dataset for 

IoT security 

Dataset covers realistic 

IoT/IIoT security issues and 

supports centralized and 

federated learning. 

Frameworks utilizing the dataset 

fail to address the heterogeneity 

of data or incorporate efficient 

parameter tuning. 

(31) UNSW-NB15 

dataset for network 

intrusion detection 

A benchmark dataset widely 

used for training and testing ML 

models in cybersecurity 

applications. 

Did not incorporate advanced 

parameter optimization for ML 

models or compare models under 

consistent conditions. 

(19) Privacy-preserving 

ML-based 

framework for IoT 

security 

Integrated blockchain for 

ensuring privacy and security 

in IoT-driven smart cities. 

Limited application to specific 

use cases; lacks generalization to 

broader IoT environments. 

(40) Machine learning 

for early DDoS 

detection in IoT 

Demonstrated high 

performance with ML 

classifiers for detecting DDoS 

attacks. 

Did not optimize classifiers for 

IoT traffic or address real-time 

performance challenges. 

 

Intrusion detection systems have been developed 

to address challenges in IoT applications, and these 

systems have been explored using ML techniques 

(20, 21, 27). In such applications, the dynamic 

assessment of cyber risks has also been considered 

essential. AI-based methods have been utilized to 

assess IoT application risks dynamically, enabling 

steps to strengthen security primitives (23). The 

possibility of building intelligent systems using AI 

and related techniques has been examined (24, 

28). A smart system has been proposed for the 

security of IoT networks integrated with 5G 

technology (28). Additional contributions include 

the use of DL-based approaches for IoT monitoring 

(25), predictive maintenance systems (26), and 

botnet discovery in IoT networks using DL 

methods (30).  

Various ML techniques have been identified as 

effective tools for securing cyberspace. However, it 

has been observed that the performance of ML 

models depends significantly on the availability of 

high-quality training data, and hyperparameter 

tuning plays a crucial role in achieving optimal 

results. In this study, hyperparameter estimation 

has been incorporated to leverage cutting-edge 

techniques and improve performance.  

The following are our contributions to this 

publication. We suggested a structure for the 

automatic detection of cyberattacks along with an 

enhanced Bayesian Optimization (BO) technique 

for parameter optimization. We presented a 
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learning-based method with hyperparameter 

Optimization for Cyber Attack Detection (LbMHO-

CAD) that automatically detects cyber-attacks. We 

developed an application to implement the 

framework and underlying algorithm. 

Experimental evaluation has shown that the 

suggested framework performs better than the 

current techniques. The remainder of the work is 

structured as follows: Part 2 examines the 

literature on modern machine learning (ML) and 

alternative strategies for preventing cyberattacks 

in Internet of Things applications. Section 3 

presents our framework and its underlying 

mechanics. Section 4 shows the outcomes of our 

experiment. While Section 6 offers conclusions and 

outlines potential areas for future improvements, 

Section 5 discusses the shortcomings of the 

suggested framework.  
 

Methodology 
The automated detection framework suggested for 

cyber-attacks includes an enhanced optimization 

method for hyperparameter optimization that 

leverages accuracy in attack detection. Subsequent 

sections provide more details.  

Problem Definition  
The main problem is detecting different kinds of 

attacks or intrusions occurring in real-time with 

improved accuracy. Moreover, the problem of 

hyperparameter tuning based on the given dataset 

is also considered.  

The Framework 
A proposed framework, shown in Figure 1, exploits 

ML models to detect cyber-attacks in IoT use cases 

automatically. Unlike existing intrusion detection 

methods such as (32-34), we focused on improving 

the Bayesian optimization (BO) method for 

parameter tuning. Figure 2 shows an overview of 

the enhanced BO method used in the proposed 

framework. Hyperparameter tuning plays a crucial 

role in improving the performance of ML models 

(44, 45). The rationale is that hyperparameter 

optimization is done based on the given dataset. 

Since each dataset is different in real-world 

applications, optimization of hyperparameters of 

ML models assumes significance. 
 

Figure 1: Proposed Framework for Automatic Detection of Cyber Attacks 
 

The framework takes the UNSW-NB15 dataset as 

input. This dataset has ground truth and test 

instances, as discussed in Section 3.6. The machine 

learning models employed in this study include 

Cyber Attack Detection 

Proposed EBO Method ML Models* 

Hyperparameter Tuning 

EDA Data Pre-Processing  

                             Model building* 

Train models Attack detection 

Attack 

detection 

Results 

UNSW

-NB15 

Dataset 

*LR, KNN, DT, RF, SVM 
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Support Vector Machine (SVM), Random Forest 

(RF), Decision Tree (DT), k-Nearest Neighbor 

(KNN), and Logistic Regression (LR). These models 

are subjected to hyperparameter tuning using the 

proposed enhanced BO method. The EBO method 

takes the UNSW-NB15 dataset as input and tunes 

the parameters of ML models.  

  

 
Figure 2: Overview of Enhanced BO Method for Hyperparameter Optimization

 

The EBO method has different considerations like 

covariance hyperparameters, covariance 

functions, cost of modeling, and BO parallelization. 

Section 3.4 provides more details on the EBO 

method and its modus operandi. After parameter 

tuning, the proposed framework performs 

Exploratory Data Analysis (EDA) on the UNSW-

NB15 dataset to know data dynamics. EDA helps 

the framework perform suitable data pre-

processing operations like duplicate checking, 

missing values, and encoding. After pre-

processing, the models subjected to EBO are used 

in the training phase to gain knowledge, and then 

they are used to detect cyber-attacks. 

The Enhanced Bayesian Optimization (EBO) 

method builds on classic Bayesian Optimization 

(BO) methods by adding parallelization, improved 

tuning of the covariance function, and improved 

cost modeling. Unlike traditional BO using fixed 

covariance functions and sequential evaluations, 

EBO intelligently adjusts to dataset properties 

with the help of Monte Carlo simulations, all-in-one 

for acquisition function estimation, this ensures 

strong hyperparameter tuning irrespective of 

dataset dimensions. Additionally, EBO employs 

parallel batch evaluations, which greatly improves 

the computational time at no compromise on 

optimization accuracy. Taken together, EBO 

outperforms other optimization methods such as 

grid search, random search, and Tree-structured 

Parzen Estimators (TPE) because of its explicit 

modeling of the spatial posterior distribution over 

objective functions, enabling it to manage noise 

well and capture complex data dynamics. EBO is 

thus especially well-suited for IoT deployment, 

where raw data may be noisy and heterogeneous. 

Machine Learning Models 
Different models used in this research for 

automatic detection of cyber-attacks are provided 

in Table 2. These are supervised learning 

techniques.  

 

Table 2: Shows Models Used in the Empirical Study 

ML Model  Description 

Decision Tree (DT) It is a tree-based model that is meant for attack classification 

K-Nearest Neighbour (KNN) 
This model leverages the nearest neighbour approach to detect 

intrusions 

Logistic Regression (LR) Based on probability theory, this model can detect intrusions. 

Support Vector Machine 

(SVM) 

This model exploits hyperplane to distinguish attack traffic from normal 

traffic. 

Random Forest (RF) This model makes use of several trees with an ensemble phenomenon. 
 

Enhanced Bayesian Optimization  
Finding the function f(x) for a limited set χ that we 

take on a subset of 𝑅𝐷is crucial in BO. In contrast to 

previous optimizations, BO creates a probabilistic 

model for f(x) and uses the model to inform 

decisions. It is not limited to using estimations of 

the local gradient and Hessian; rather, it considers 

all prior assessments of f(x). Thus, to minimize 

computing costs, it can identify non-convex 

functions. Because f(x) assessments need machine 

Enhanced Bayesian Optimization Method 

Covariance 

Hyperparameters 
Covariance 
Functions 

Cost of 
Modelling 

BO 
Parallelization 
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learning training, they are growing more costly. 

However, this expense is acceptable because the 

model produces accurate conclusions. When using 

BO, two crucial decisions must be made: selecting 

a prior function that accounts for any 

presumptions and developing a utility function to 

determine the subsequent assessment point. Given 

its strength, we considered representing the prior 

distribution of functions, the Gaussian process 

(GP). It has a structure like 𝑓: 𝜒 ⟶ 𝑅.  Table 3 

shows the notations used in the paper.

Table 3: Notations Used in Hyper-parameter Optimization Using Enhanced BO 

Notation Meaning 

𝜒 Denotes bounded set 

𝑦 = [𝑦1, 𝑦2, … , 𝑦𝑁]𝑇 Covariance matrix 

 

𝑣 Denotes observation noise 

𝑚 Indicates a constant mean 

𝑘 Value used to balance exploitation and exploration  

𝑓(𝑥) Function  

𝑎(𝑋) Value  acquired from different observations 

Φ(·) Indicates cumulative distribution function   

GP Prior distribution  

𝜃1:𝐷 Scales of D length 

𝜃0 Indicates covariance amplitude 

𝑦𝑛~𝑁(𝑓(𝑋𝑛), 𝑣) and 𝑣 Function observation with variance of  noise 

(𝑋): 𝜒 → 𝑅+ Indicates a duration function  

𝑅𝐷 Indicates a subset 
 

{𝑋𝑛 ∈ 𝜒}𝑛=1
𝑁  GP has the property of creating 

multivariate Gaussian distribution on 𝑅𝑁 . The 

value of the function 𝑓(𝑋𝑛) is the nth point from a 

finite set of points (N). This distribution's elegant 

marginalization properties facilitate the 

calculation of conditions and marginals. For 

functions, a mean function m:χ→R and a 

covariance function 𝐾: 𝜒 × 𝜒 → 𝑅 yield the final 

distribution. For further information on Gaussian 

processes (42).  

Enhanced Bayesian Optimization (EBO) is an 

extension of Bayesian Optimization (BO) for 

hyperparameter tuning in data science that makes 

some necessary improvements. Improvements 

such as dynamic tuning of covariance 

hyperparameters for more accurate modeling of 

complex inter-data dependencies, advanced 

acquisition strategies like a monte-carlo-optimized 

expected improvement (EI) and parallelized 

multiple batch evals allow for substantially lower 

computation time. Moreover, EBO also utilizes cost 

modeling to dynamically strike a balance between 

exploration and exploitation, thus maintaining 

both computational efficiency and accuracy of the 

search results. This pendulum motion of refined 

optimization makes a continual evolution in the 

machine learning techniques used in this 

experiment, namely Decision Tree, K-Nearest 

Neighbors, Logistic Regression, Support Vector 

Machine, and Random Forest, turning them to the 

best based on the respective dataset of IoT and 

improving the detection of cyberattacks at its best 

performance. 

BO and Its Acquisition Functions  
Our observations take the form {𝑋𝑛, 𝑦𝑛}𝑛=1

𝑁 , when 

the introduction of noise takes the form  

𝑦𝑛~𝑁(𝑓(𝑋𝑛), 𝑣, and f(x) is, as we thought, from the 

Gaussian process prior. Subsequently, an 

acquisition function 𝑎: 𝜒 → 𝑅+ascertains the 

subsequent point to be assessed using proxy 

optimization. It is represented as 𝑋𝑛𝑒𝑥𝑡 =

𝑎𝑟𝑔𝑚𝑎𝑥𝑋 𝑎(𝑋)According to previous findings and 

GP hyperparameters. The expression for this 

dependence is 𝑎(𝛸; {𝑋𝑛, 𝑦𝑛}, 𝜃). Regarding the 

acquisition function, there are several choices. 

However, such functions are dependent upon the 

model via the variance function for the Gaussian 

process prior, represented as 𝜎2(𝛸; {𝑋𝑛, 𝑦𝑛}, 𝜃), 

and the predictive mean function, 𝜇(𝛸; {𝑋𝑛, 𝑦𝑛}, 𝜃). 

In this sense, the current best value is calculated 

using 𝑋𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑋𝑛
𝑓(𝑋𝑛), where Φ(•) stands 

for the cumulative distribution function. Eq. 1 

expresses the analytical computation that is done 

to maximize improvement probability.  
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𝑎𝑃1(𝑋; {𝑋𝑛, 𝑦𝑛}, 𝜃) = ∅(𝛾(𝑋)), 𝛾(𝑋) =
𝑓(𝑋𝑏𝑒𝑠𝑡)−𝜇(𝑋;{𝑋𝑛,𝑦𝑛},𝜃)

𝜎(𝑋;{𝑋𝑛,𝑦𝑛},𝜃)
.                        [1] 

As an alternative, anticipated improvement (EI) 

can be calculated using Eq. 2.  

𝛼𝐸𝐼(𝑋; {𝑋𝑛, 𝑦𝑛}, 𝜃)=

𝜎(𝑋, {𝑋𝑛 , 𝑦𝑛}, 𝜃) (𝛾(𝑋)∅(𝛾(𝑋)) +

𝑁(𝛾(𝑋); 0,1))         [2] 

Recently, the higher confidence level for GP has 

been used to implement the acquisition functions 

given in Eq. 3.  

𝛼𝐿𝐶𝐵(𝑋; {𝑋𝑛 , 𝑦𝑛}, 𝜃)=𝜇(𝑋; {𝑋𝑛 , 𝑦𝑛}, 𝜃)-

𝑘𝜎(𝑋; {𝑋𝑛 , 𝑦𝑛}, 𝜃)                                  [3] 

A configurable parameter called k strikes the right 

balance between exploration and exploitation. In 

this paper, EI is taken into account. 

Covariance Hyperparameters and 

Covariance Functions 
GP, based on the covariance function, supports a 

wealth of distributions on functions. In this case, 

determining relevance is crucial. Equation 4 is 

used to compute this.  

𝐾𝑆𝐸(𝑋, 𝑋`)=𝜃0𝑒𝑥𝑝 {−
1

2
𝑟2(𝑋, 𝑋`)}𝑟2(𝑋, 𝑋`)=

∑𝐷
𝑑=1

(𝑥𝑑−𝑥𝑑
` )2

𝜃𝑑
2                             [4] 

The 5/2 kernel is utilized to achieve more 

improvements, as stated in Equation 5.  

𝐾𝑀52(𝑋, 𝑋`)=𝜃0 (1 + √5𝑟2(𝑋, 𝑋`) +

5

3
𝑟2(𝑋, 𝑋`)) 𝑒𝑥 𝑝 {−√5𝑟2(𝑋, 𝑋`)}         [5] 

As a result, sample functions that lack the squared 

exponential's smoothness become progressively 

differentiable. Upon determining the nature of 

covariance, hyperparameter management 

becomes crucial. The hyperparameters for the D + 

3 Gaussian process consist of the constant mean m, 

the observation noise v, and the covariance 

amplitude θ_0. The most popular method for 

maximizing Gaussian process-related parameters 

is stated as  

𝑝(𝑦|{𝑋𝑛}𝑛=1
𝑁 , 𝜃, 𝑣, 𝑚) = 𝑁(𝑦|𝑚1, ∑𝜃 + 𝑣1). 

Therefore, Eq. 6 expresses an integrated 

acquisition function.  

�̂�(𝑋; {𝑋𝑛, 𝑦𝑛})=

∫ 𝑎(𝑋; {𝑋𝑛, 𝑦𝑛}, 𝜃)𝑝({𝑋𝑛 , 𝑦𝑛}𝑛=1
𝑁 )𝑑𝜃                                       

[6] 

Every observation is necessary for both θ and a(X). 

Attaining generalization in hyperparameters is 

crucial for emotional intelligence. A Monte Carlo 

estimate is used to arrive at this figure. To 

efficiently obtain samples, slice mapping is 

employed (35). 

Considering Modelling Costs 
BO must take modeling costs into account when 

optimizing quickly. We optimized for EI per 

second, which yields points without generating a 

significant amount of overhead. We hypothesize 

that while the true objective function f(X) and the 

duration function (𝑋): 𝜒 → 𝑅+  are independent, 

they aid in capturing via GP fluctuations for multi-

task learning. When the independence 

requirement is met, calculating the inverse 

duration expected to compute EI every second is 

less complicated.  

Parallelizing Bayesian Optimization  
Now that multi-core computing has become 

commonplace, BO methods may be parallelized. 

We decide which point needs to be analyzed next 

using batch parallelism. Experiments are repeated 

as using the same function more than once is 

impossible. Additionally, we suggested a 

sequential approach to compute Monte Carlo 

estimations related to the acquisition function, 

which uses the tractable inference capabilities of 

GP. Given N evaluations and {𝑋𝑛 , 𝑦𝑛}𝑛=1
𝑁  as 

generating data, it is plausible that J evaluations, 

represented as {𝑋𝑗}𝑗=1
𝐽 , are waiting at various 

places. Considering all possible outcomes related 

to pending assessments, a new point is selected 

based on the projected acquisition function.  

�̂�(𝑋; {𝑋𝑛, 𝑦𝑛}, 𝜃, {𝑋𝑗})=∫
𝑅𝐽𝛼(X;{𝑋𝑛, 𝑦𝑛},𝜃, {𝑋𝑗 , 𝑦𝑗}) 

𝑝({𝑋𝑗}𝑗=1
𝐽 , {𝑋𝑛, 𝑦𝑛}𝑛=1

𝑁 )dy1….dyj                      [7] 

The expectation of a(x) given a J-dimensional 

Gaussian distribution—whose covariance and 

mean can be easily found—is all at stake in this 

situation. Computed expected acquisition with 

samples is more accessible when the covariance 

hyperparameter is considered. While we have 

demonstrated the high success rate of the Monte 

Carlo estimate technique (43).  

Algorithm Design 
Based on EBO and ML models, we proposed an 

algorithm that automatically detects cyber-attacks. 

The algorithm is called Learning based Method 

with Hyperparameter Optimization for Cyber 

Attack Detection (LbMHO-CAD).  
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Algorithm: Learning-based Method with Hyperparameter Optimization for Cyber Attack Detection 

(LbMHO-CAD) 

 

Inputs 

UNSW-NB15 dataset D 

ML models M 

Output 

Attack detection results 

 

• Begin 

Hyperparameter optimization 

• For each model m in M 

• Update m using the EBO method 

•    Add m to M’ 

• End For 

Pre-Processing 

• Status🡨EDA(D) 

• IF Status reflects need for improving data Then 

•    Remove duplicates 

•    Treat missing values 

•    Scaling  

• End If 

• (T1, T2)🡨DataSplit(D) 

Attack Detection  

• For each model m’ in M’ 

•    Train m’ with T1 

•    Use m’ to detect cyber attacks 

•    Display attack detection results 

• End For 

• End 
 

Algorithm 1: Learning based Method with 

Hyperparameter Optimization for Cyber Attack 

Detection 

As presented in Algorithm 1, the proposed 

algorithm inputs UNSW-NB15 dataset D and ML 

model M. It performs hyperparameter tuning using 

the proposed EBO method. Based on EDA results, 

the algorithm determines whether the data needs 

to be improved by removing duplicates, treating 

missing values, and scaling. Then, the algorithm 

has the provision to train updated models and 

perform attack detection.  

 

Dataset Details 
The UNSW-NB15 dataset was collected from a 

previous research for empirical study (31). It 

contains nine kinds of cyber-attacks that 

commonly occur in different applications, 

including IoT use cases. The dataset has 175341 

instances for training and 82332 instances for 

testing. It is one of the widely used datasets for 

cyber security research (32, 34).  

Evaluation Procedure 
The suggested method is assessed using several 

performance metrics from the scenarios depicted 

in Figure 3.  
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Figure 3: Confusion Matrix 

 

Performance metrics are applied to determine the 

efficiency of the proposed framework. They are as 

in Eq. 8, Eq. 9, and Eq. 10.  

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
                    [8] 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
                          [9] 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
      [10] 

These metrics are used in the evaluation of the ML 

models.  
 

Results and Discussion 
This section displays the results of the proposed 

framework's experiments. The results are divided 

into three categories: EDA, performance of the 

proposed algorithm and performance comparison 

with prior works. The effectiveness of the 

suggested algorithm with different ML models is 

compared against prior works (36-40). We 

observed from the empirical study that our 

method outperforms existing models due to the 

enhanced BO that could optimize 

hyperparameters for the UNSW-NB15 dataset.  

Exploratory Data Analysis 
The UNSW-NB15 dataset was subjected to EDA to 

determine its distribution. EDA helped determine 

the need for duplicate removal, treating missing 

values, and scaling. This section presents different 

aspects of the data and its distribution dynamics. 

As presented in Figure 4, the distribution of attacks 

and normal instances in the UNSW-NB15 dataset 

arevisualized. As presented in Figure 5, the 

distribution of different services in the UNSW-

NB15 dataset is visualized. Figure 6 visualizes the 

distribution of different communication or 

transaction protocols in the UNSW-NB15 dataset. 

As presented in Figure 7, the results of bivariate 

analysis are provided. It reflects the distribution of 

visualized attack categories and services in the 

UNSW-NB15 dataset. Figure 8 visualizes the 

distribution of data in terms of different attack 

categories in the UNSW-NB15 dataset. As 

presented in Figure 9, the percentage of normal 

and attack instances in the UNSW-NB15 dataset is 

visualized. 
  

 
Figure 4: Attack and Normal Traffic Distribution in the Dataset
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Figure 5: Data Distribution Dynamics of Different Services

 

 
Figure 6: Data Distribution Dynamics about Different Protocols

 
Figure 7: Bivariate Analysis Reflecting Different Attack Categories against Services
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Figure 8: Data Distribution against Various Attack Categories 

 

 
Figure 9: Percentage of Data about Normal and Attack Traffic

 

Performance of ML Models Optimized 

by EBO  

This section shows every ML model employed in 

this study. These models are optimized using the 

EBO method. Due to parameter optimization based 

on the UNSW-NB15 dataset, the underlying ML 

models could perform better in terms of efficient 

cyber-attack detection. Table 4 presents the 

performance exhibited by various models.  
 

Table 4: Performance of ML Models with EBO Method for Hyperparameter Tuning 

Attack Detection Model 
Performance (%) 

Precision Recall Accuracy  

kNN 0.8864 0.8561 0.9791 

RF 0.8499 0.9026 0.9788 

DT 0.8337 0.8789 0.9755 

SVM  0.7661 0.8485 0.9661 

LR 0.7640 0.8190 0.9642 
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The table shows the performance of different ML 

models for attack detection along with the EBO 

method used for hyper-parameter tuning. We 

compare precision, recall, accuracy across KNN, 

RF, DT, SVM, and LR metrics. RF has the highest 

recall, and KNN has the highest precision. Across 

models, accuracy is reliably high. 

 

 
Figure 10: Attack Detection Performance Comparison of ML Models Optimized by EBO

 

As presented in Figure 10, the performance of ML 

models optimized by EBO for hyperparameter 

tuning is provided. Each model showed different 

performance due to their underlying detection 

methodology. The least precision is exhibited by 

LR with 76.40%. The highest precision is achieved 

by the KNN model with 88.64%. Similarly, the least 

recall is shown by LR with 81.90%, and the highest 

recall observed in 90.26%, exhibited by RF. 

Regarding accuracy, the least performance is 

demonstrated by LR with 96.42% and the highest 

accuracy is exhibited by KNN with 97.91%. 

Performance Comparison with State of 

the Art  

This section presents experimental results. The 

existing approach is taken from prior works. The 

proposed EBO-based approach is compared 

against the existing approach.  Table 5 shows 

proposed approach compared with existing 

approach. 
 

Table 5: Model Performance Comparison 

Attack Detection Model 

Accuracy (%) 

Existing 

Approach 
Proposed EBO Approach 

KNN 94.57 (36) 97.91 

RF 91.66 (37) 97.88 

DT 85.83 (38) 97.55 

SVM 93.3 (39) 96.61 

LR 95.34 (40) 96.42 
 

Table compares the accuracy of other machine 

learning algorithms for attack detection based on 

existing and proposed EBO approach. The EBO 

approach enhances all models by a large margin. 

KNN delivers the topmost accuracy (97.91%) and 

is trailed in accuracy by RF and DT. This new 

proposed approach significantly improves the 

accuracy over the existing metrics.
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Figure 11: Performance Comparison between Proposed EBO-Based ML  

Models and Existing ML Models 
 

Figure 11 shows the results of ML models 

optimized using EBO for hyperparameter tuning 

compared against existing ML models. Each model 

showed different performance due to their 

underlying detection methodology. Accuracy is the 

measure used for comparison. Higher accuracy 

indicates better attack detection performance. The 

existing approach with KNN showed 94.57% 

accuracy, while the proposed approach with KNN 

exhibited 97.91% accuracy. RF with the existing 

approach showed 91.66% while the proposed 

method showed 97.8% accuracy. DT of the existing 

approach achieved 85.83% while its proposed 

counterpart exhibited 97.55% accuracy. The 

existing approach with SVM showed 93.30% while 

the proposed method with SVM showed 9.61% 

accuracy. LR exhibited 95.34% with the existing 

method, while the proposed method with LR 

showed 9.42% accuracy. Based on the findings, it 

is noted that the suggested ML framework with 

EBO for hyperparameter optimization could 

outperform existing methods. Table 6 provide 

quality analysis. 

 

Table 6: Qualitative Analysis 

Method Dataset 

Used 

Technique Advantages Disadvantages 

(4) IoT-

generated 

data 

Semi-supervised ML Effective for small, 

imbalanced datasets 

Limited scalability to 

diverse datasets 

(3) Industrial 

IoT data 

Deep learning-based 

anomaly detection 

High accuracy for 

large-scale data 

High computational 

cost; limited 

hyperparameter 

tuning 

(17) Edge-

IIoTset 

Centralized/federated 

ML 

Realistic dataset for IoT 

security 

Lacks 

hyperparameter 

optimization and real-

time application 

support 

Proposed 

Framework 

UNSW-

NB15 

EBO with ML (DT, KNN, 

RF, SVM, LR) 

High accuracy 

(97.91%), robust 

hyperparameter 

tuning, adaptable to 

noisy IoT data 

Evaluation limited to 

UNSW-NB15; not yet 

validated on 

additional datasets 

 

To summarize the importance of comparison, this 

table presented to discuss all the desired aspects 

between the proposed framework and state-of-

the-art techniques for IoT cyberattack detection. 

This summarizes the datasets used, techniques 

adopted, benefits, and drawbacks of each method. 

The developed framework that utilizes Enhanced 

Bayesian Optimization (EBO) using machine 

learning models is giving improved accuracy 

(97.91%) along with hyperparameter tuning, 

which is effective in noisy IoT data. On the other 

hand, deep learning or semi-supervised 

approaches cannot efficiently perform 

hyperparmeter optimization or demand a high 
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amount of computational resources (4, 14, 45). The 

evaluation of the proposed framework has been 

only on the UNSW-NB15 dataset with further 

evaluation on other datasets needed. This 

research presents an ML architecture to refer, 

enhanced detection of cyber-attacks for more 

robust cybersecurity solutions in the IoT use cases. 

The framework comprises a combination of 

machine-learning models, targeting the detection 

of attack patterns, along with hyperparameter 

tuning for each model. Using Enhanced Bayesian 

Optimization (EBO) allows the framework to 

show significant improvement over traditional 

hyperparameter tuning methods. It dynamically 

varies key elements like covariance 

hyperparameters and acquisition functions to 

tailor the models according to the specialized 

nature of IoT datasets. Moreover, the obtained 

tuning also proves that it can adjust noisy and 

heterogeneous data from IoT environments, which 

makes it accuracy and reliability. As an example, 

the accuracy of the K-Nearest Neighbors (KNN) 

model was 97.91%, which indicates significant 

influence of EBO in improving performance. In 

addition, using Exploratory Data Analysis (EDA) 

guarantees that steps for data preprocessing, like 

duplicate deletion, handling of missing values, and 

scaling, are correctly configured to the dataset. 

This framework is strong and powerful to detect 

different varieties of cyber-attack using EBO and 

different machine learning models used was 

Decision Tree, K-Nearest Neighbors, Logistic 

Regression, Support Vector Machine, Random 

Forest. This, paired with the EBO’s exploration and 

exploitation balance for parameter optimization, 

establishes the framework as a scalable mitigation 

solution for IoT applications against the evolving 

threat landscape. 
 

Conclusion  
We suggested a structure for the automatic 

detection of cyberattacks. We enhanced the 

Bayesian Optimization (BO) technique for 

parameter optimization. Our Enhanced Bayesian 

Optimization (EBO) method has different 

considerations like covariance hyperparameters, 

covariance functions, cost of modeling, and BO 

parallelization. Based on EBO and ML models, we 

proposed an algorithm that automatically detects 

cyber-attacks. The algorithm is called Learning 

based Method with Hyperparameter Optimization 

for Cyber Attack Detection (LbMHO-CAD). It 

performs hyperparameter tuning using the 

proposed EBO method. Based on EDA results, the 

algorithm determines whether the data needs to 

be improved by removing duplicates, treating 

missing values and scaling. Then the algorithm has 

provision to train updated models and perform 

attack detection. We used a benchmark dataset 

known as UNSW-NB15 for our empirical study. 

Our experimental results have revealed that our 

EBO-based approach outperformed existing ML 

techniques. Our method achieved the highest 

accuracy at 97.91%. In the future, we work on deep 

learning models along with the proposed EBO 

method to improve our framework for efficient 

cyberattack detection. UNSW-NB15 is a 

comprehensive dataset to validate IoT 

cybersecurity frameworks, and it is important to 

verify the generalizability of the proposed 

framework in various IoT environments. We will 

evaluate our framework on diversified datasets, 

including CICIDS2017, ToN_IoT, and Bot-IoT in the 

future work. Such evaluations will however 

illustrate the strength of the proposed Enhanced 

Bayesian Optimization (EBO) method and 

adaptability over different IoT use cases. 

Limitations 
Although the proposed framework presents 

notable accuracy and efficiency enhancements, 

certain limitations exist. The first limitation is that 

the experiments were conducted based on the 

UNSW-NB15 dataset, which may cause possible 

bias due to the fact that the dataset is not a 

complete representative for the diverse attack 

patterns and versatile network environments 

present in real-world IoT scenarios. As such, 

assessing the framework on other datasets is 

necessary to confirm generalizability. Second, the 

machine learning models used, for example 

Logistic Regression and Decision Tree, are unlikely 

to detect complex non-linear relationships that 

may exist within some types of attacks. More 

advanced models, such as deep learning, may 

improve performance but require more 

computational power. Finally, although EBO 

makes hyperparameter selection more 

performant, it still has more complexity than other 

methods (like grid or random search), which may 

complicate its adoption for real-time applications 

in resource-poor connected devices. The 

limitations in current data diversity and models as 

well as the EBO process will be the focus of future 
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research studies to improve upon all of these 

considerations. 
 

Abbreviations 
IoT: Internet of Things, AI: Artificial Intelligence, 

ML: Machine Learning, BO: Bayesian Optimization, 

EBO: Enhanced Bayesian Optimization, EDA: 

Exploratory Data Analysis, GP: Gaussian process. 
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