
International Research Journal of Multidisciplinary Scope (IRJMS), 2025; 6(1):1317-1327  

     

Original Article | ISSN (O): 2582-631X                       DOI: 10.47857/irjms.2025.v06i01.02645 

Self-Attention Augmented Wasserstein Generative 
Adversarial Network-based Detection of Brain Alzheimer 

Disease Using MRI 
SM Zakariya1*, Mohammad Sarosh Umar2 

1Electrical Engineering Section, University Polytechnic, Aligarh Muslim University, Aligarh, India, 2Department of Computer 
Engineering, ZHCET, Aligarh Muslim University, Aligarh, India . *Corresponding Author’s Email: smzakariya.ubp@amu.ac.in 

Abstract 
 

Alzheimer’s disease (AD) is a progressive neurological condition that leads to dementia. This study presents the Self-
Attention Augmented Wasserstein Generative Adversarial Network (SAA-WGAN) for classifying AD stages, utilizing 
images from the Alzheimer’s disease Neuroimaging Initiative (ADNI). Input images were pre-processed with Fast 
Guided Median Filter (FGMF) to enhance quality and reduce noise. Data augmentation techniques, including rotations 
and cropping, addressed class imbalances and improved training diversity. The SAA-WGAN model was validated across 
varying batch sizes, employing both augmented and non-augmented datasets to assess generalization capabilities. The 
technique was applied to 1,296 images, achieving a peak accuracy of 99% and demonstrating improved performance 
over conventional methods in key metrics such as AUC, Precision, and Sensitivity. These results highlight the model's 
effectiveness and potential to enhance diagnostic accuracy for Alzheimer's disease stages.   

Keywords: ADNI Dataset,  Alzheimer’s Disease, Batch Size, Data Augmentation, Deep Learning, Generative 

Adversarial Network. 
 

Introduction 

Alzheimer's disease (AD) is a neurodegenerative 

disorder characterized by the progressive death of 

brain cells, leading to dementia and cognitive 

decline. Diagnosing AD is challenging and time-

consuming, resulting in delayed treatment and less 

effective outcomes. Early diagnosis is crucial for 

improving treatment efficacy (1-3). As the most 

common type of dementia, AD predominantly 

affects individuals aged 65 and older (4). 

Advancements in diagnostic technologies can 

facilitate better treatment discovery and 

potentially reduce healthcare costs through timely 

interventions (5, 6). Recent developments in 

clinical imaging technologies, particularly MRI, 

have significantly enhanced the diagnosis of AD. 

MRI stands out due to its high spatial resolution, 

allowing for detailed visualization of brain 

structures and identifying degeneration in specific 

cortical regions (7-9). As the global population 

ages, the prevalence of AD is expected to rise 

dramatically over the next two decades, further 

burdening society (10). MRI scans often reveal 

structural changes that can precede overt cognitive 

symptoms, providing critical windows for early 

diagnosis (11, 12). Integrating neuroimaging and 

advancements in machine learning algorithms has 

improved the accuracy of AD diagnosis and opened 

new avenues for research (13, 14). Furthermore, 

understanding the impact of batch size and data 

redundancy on model performance is essential for 

enhancing detection methods. Techniques such as 

data augmentation—through rotations, flips, and 

contrast correction—can increase training data 

diversity and address the limitations of small 

labeled datasets in medical imaging (15). The 

remainder of this paper is organized into the 

following sections. The section titled 'Related 

Work' reviews existing approaches to classification 

in Alzheimer’s disease (AD). 'Methodology' 

outlines the suggested method, detailing the 

processing of AD and the classification techniques 

used. 'Results and Discussion' presents the model's 

performance results along with an in-depth 

analysis. Finally, the 'Conclusion' summarizes the 

key findings of the study. A transfer learning-based 

CNN with data augmentation was applied to 3D 

MRI scans from the OASIS dataset to solve the class 

imbalance problem. It uses pre-trained models for  
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feature extraction, improving accuracy without 

requiring a large, evenly distributed dataset. The  

main advantage is its ability to achieve high 

classification accuracy (16). However, relying on 

data augmentation to compensate for class 

imbalance was a limitation that may not fully 

generalize to other datasets or real-world 

scenarios. A CNN model-based classification 

framework produced decreased overfitting, 

memory utilization, computational complexity, and 

better accurate classifications for AD stages. The 

VGG16 model, fine-tuned from ImageNet, achieved 

the best accuracy. The main advantage was high 

accuracy with minimal labeled data and 

computational resources (17). However, a 

limitation was that the transfer learning method 

does not generalize well to unobserved data 

without extensive refinement. 

Brain MRI images are classified for AD using the 

ADNet-DA model (with domain adaption). The 

approach uses CNNs to automatically identify AD 

biomarkers without needing prior domain-specific 

knowledge. ADNet-DA outperformed numerous 

prior techniques with its exceptional accuracy in 

the CAD Dementia challenge testing. A major 

advantage was its fully automatic, fast process for 

detecting AD-related changes in brain images (18). 

However, accuracy leaves room for improvement, 

especially by adapting the model to different 

datasets to improve its diagnostic accuracy. A 

thorough examination of medical image 

augmentation approaches provides comparisons 

and interpretations, exploring the strategies 

employed to improve further deep learning 

models' abilities to diagnose diseases in an array of 

organs, including the eyes, brain, lungs, and 

breasts. Several types of imaging, such as 

fundoscopy, MRI, CT, and mammography, are 

employed with these techniques (19).  However, 

the study lacks clarity regarding which 

augmentation techniques are most effective for 

specific image types, as the results vary widely due 

to differences in diseases, network architectures, 

and the number of datasets used.  

Three data augmentation techniques using various 

CNN models and transformation layers were 

evaluated and reported for the 3D CNN models. 

The studies used multiple testing and cross-

validation to overcome the data paucity and 

variability. Models with an intermediate level of 

complexity produced consistent results at different 

folds and trial counts, making them the top-

performing models (20). However, accuracy was 

decreased when utilizing concurrent increments, 

and up to 10% of the difference in model 

performance might be attributed to strategy and 

design. The AD phases were classified using ADD-

Net, a framework with fewer parameters that is 

optimized for training on small datasets. Synthetic 

hypersampling was used to guarantee a balanced 

class distribution in order to overcome class 

imbalance in the Kaggle MRI dataset. ADD-Net 

demonstrated superior performance across 

several metrics, surpassing models like 

DenseNet169, VGG19, and InceptionResNet V2 

(21). However, the model’s reliability in synthetic 

data augmentation may not fully generalize to real-

world, highly heterogeneous datasets. An efficient 

CNN model based on InceptionV3 was developed 

to classify the stages of Alzheimer’s disease (AD) 

using the ADNI dataset. Data augmentation was 

employed together with the CLAHE approach for 

image improvement to rectify the imbalance in 

classes. AlzheimerNet achieved the highest 

accuracy and outperformed five pre-trained 

models (22). However, the reliance on data 

augmentation and fine-tuning limits 

generalizability to other datasets with distinct 

characteristics. This study tackles these challenges 

by introducing the Self-Attention Augmented 

Wasserstein Generative Adversarial Network 

(SAA-WGAN). The model improves image quality 

through advanced pre-processing with the Fast 

Guided Median Filter (FGMF), uses data 

augmentation to balance classes and enhance 

training diversity, and features an innovative 

architecture that delivers exceptional accuracy. 
 

Methodology 
In this study, SAA-WGAN is projected to classify AD 

stages at different batch sizes with and without 

augmentation. The input images are initially 

attained from the ADNI database (23). The images 

are preprocessed using Fast Guided Median Filter 

(FGMF) to improve image quality by effectively 

reducing noise and enhancing image features for 

more accurate classification (24). Besides, to 

address the imbalanced data and increase the 

diversity of training data, data augmentation 

techniques, including rotations, and crop 

adjustments, are employed. Also, a SAA-WGAN 

framework is presented for the classification of AD 

stages (25). The model is validated at different 
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batch sizes to assess its stability, performance, and 

computational efficiency. Additionally, the 

dataset's augmented and non-augmented versions 

are used to validate the data augmentation effect 

on the method generalization capabilities. The 

process of the presented methodology is 

represented in Figure 1. 

 

 
Figure 1: Block Diagram Representation of the Projected Model 

 

Data acquisition involves different categories of 

images like molecular brain images, structural 

brain images, functional brain images, genetic data, 

demographic information, and cognitive 

assessments. The ADNI dataset primarily consists 

of participants aged 55 and older, with a roughly 

equal distribution between men and women. 

Cognitive status among participants ranges from 

cognitively normal (CN) to Alzheimer's disease 

(AD), covering various stages of mild cognitive 

impairment (MCI). Table 1 describes the ADNI 

demographic information. 
 

Table 1: ADNI Dataset Demographic Information 

Parameters CN MCI AD 

Images 2665 3924 1731 

Subjects 110 125 129 

Males 1400 (52.6%) 2080 (53.1%) 900 (51.9%) 

Females 1265 (47.4%) 1844 (46.9%) 831 (48.1%) 

Age (years) 51-90 55-89 60-89 

Mean (Age) 72.5 74.2 76.8 
 

In this stage, the input brain images are 

preprocessed using Fast Guided Median Filter 

(FGMF) to remove the image noise.  The FGMF 

enhances the traditional guided filter, designed to 

reduce noise while preserving important image 

details efficiently. It uses local statistics to 

adaptively filter the image. Initially, the guided 

filter formulation for the guided image (𝐼) the 

output filtered image (𝑂) can be computed as using 

equation [1],  
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𝑂(𝑥) = 𝑎(𝑥) ∗ 𝐼(𝑥) + 𝑏(𝑥)                                                                                                     

[1] 

Where, 𝑂(𝑥) indicates the output pixel value, 𝐼(𝑥) 

specifies the input pixel value, 𝑎(𝑥)and 𝑏(𝑥) 

represents the filter parameters that need to be 

computed. These parameters are determined 

based on the local image statistics. To 

calculate𝑎(𝑥)and 𝑏(𝑥) there is a need to compute 

the local mean (𝑀𝑒𝑎𝑛𝐼) and local covariance 

(𝐶𝑜𝑣𝐼) of the guided image [𝐼] within a local 

window of size (𝑤 × 𝑤) centered at pixel 𝑥. The 

mean and covariance are calculated as follows 

using equations [2] and [3], 

𝑀𝑒𝑎𝑛𝐼(𝑥) = (
1

𝑤2) ∗ ∑ 𝐼(𝑃)                                                                                              

[2] 

𝐶𝑜𝑣𝐼(𝑥) = (
1

𝑤2) ∗ ∑ 𝐼(𝑃) ∗ 𝐼(𝑃)𝑇                                                                                            

[3] 

Where, 𝑃indicates the pixels within the local 

window. Once the local mean and covariance are 

computed then the filter parameters 𝑎(𝑥)and 𝑏(𝑥) 

are calculated using equations [4] and [5] as 

follows, 

𝑎(𝑥) =
(𝐶𝑜𝑣𝐼(𝑥)+𝜀∗𝐼(𝑥))

(𝑉𝑎𝑟𝐼(𝑥)+𝜀)
                                                                                                               

[4] 

𝑏(𝑥) = 𝑀𝑒𝑎𝑛𝐼(𝑥) − 𝑎(𝑥) ∗ 𝑀𝑒𝑎𝑛𝐼(𝑥)                                                                                   

[5] 

Where, 𝜀represents a small positive constant to 

prevent division by zero, and 𝑉𝑎𝑟𝐼(𝑥)represents the 

local variance of the guided image [𝐼] within the 

window and is computed using equation [6], 

𝑉𝑎𝑟𝐼(𝑥) = 𝐶𝑜𝑣𝐼(𝑥) − 𝑀𝑒𝑎𝑛𝐼(𝑥) ∗ 𝑀𝑒𝑎𝑛𝐼(𝑥)𝑇                                                                      

[6] 

Finally, by using the computed 𝑎(𝑥)and 𝑏(𝑥) to 

filter the noisy input image (𝑃) to obtain the 

denoised output image (𝑄) as represented in 

equation [7] as follows, 

𝑄(𝑥) = 𝑎(𝑥) ∗ 𝑃(𝑥) + 𝑏(𝑥)                                                                                                    

[7] 

At last, the developed FGMF effectively reduce the 

noise while preserving important image features. 

The input and preprocessed images are shown in 

Figure 2.  

 

 
Figure 2: (A) Input Brain Images (B) Preprocessed Images 

 

A large and diverse dataset is essential to train 

effective models in deep learning. Image 

augmentation is a technique for artificially 

expanding the dataset's size and diversity through 

various transformations applied to the original 

images. This technique increases generalization, 

reduces the risk of overfitting, and sometimes even 

enhances general performance and reliability. In 

this study, some augmentation techniques were 

applied to the preprocessed images, as mentioned 

in Table 2. 

 

Table 2: Data Augmentation Hyperparameters 

Augmentation Technique Parameters 

Image Rotation 900, 1800, 2700 

Crop From Top 900, 1800, 2700 
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Crop From Bottom 900, 1800, 2700 

Crop From Right 900, 1800, 2700 

Crop From Left 900, 1800, 2700 

Whole Crop 900, 1800, 2700 

Crop From Corner 900, 1800, 2700 

 

Such variations result in the duplication of images 

for all the originals. This leads to a relatively large 

dataset and, as a result, a more significant training 

set. This more extensive as well as diversified set 

helps the deep learning model to learn more 

associated patterns with the data, which tends to 

gain an increased accuracy in classifying stages of 

Alzheimer's disease. After such an augmentation 

process, the dataset became much larger by 

containing a significantly larger number of images. 

The augmented images are therefore depicted in 

Figure 3. 
 

 
Figure 3: Augmented Output Images 

 

SAA-WGAN Model for Alzheimer's 

Detection 
A SAA-WGAN is regarded as the state-of-the-art 

model, for which key aspects, including self-

attention and Wasserstein GANs are said to 

augment medical image analysis, particularly 

partially the Alzheimer’s diagnosis. The WGAN 

meticulously polishes the conventional technique 

of GAN, and its main principle is the improvement 

of the discriminator by increasing the distances 

between the real and the generated data as 

measured by Wasserstein distance. This especially 

helps in regulating the learning process of GANs 

and also enhances the variation in the data created.  

In a traditional GAN, the objective is to find the 

generator (𝑔) that produces realistic data such that 

the discriminator(𝑑) cannot distinguish between 

the real and generated data. The GAN's min-max 

optimization problem is given in equation [8], 

𝑚𝑖𝑛
𝑔

𝑚𝑎𝑥
𝑑

− (−𝐸(𝑑(𝑘, 𝑦)) + 𝐸(𝑑(𝑘, 𝑌)))                                                                                

[8] 

Where, the input brain images are denoted as𝑦, the 

augmented images are denoted as 𝑌, and the 

groundtruth images are mentioned as 𝑘. In this, the 
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loss of discriminator is calculated using equation 

[9], 

𝑙𝑜𝑠𝑠𝑑 = −𝐸(𝑑(𝑘, 𝑦)) + 𝐸(𝐷(𝑘, 𝑌))                                                                                         

[9] 

 Also, the loss of modified generator is 

computed using equation [10], 

𝑙𝑜𝑠𝑠𝑔 = −𝐸(𝑑(𝑘, 𝑌))                                                                                                               

[10] 

Self-attention allows the model to attend to 

important parts of the input by computing 

attention scores that capture long-range 

dependencies between different parts of the image. 

Such images, for example, MRI or PET scans of 

medical images, bring about a significant challenge 

because the subtle patterns in various regions of 

the brain can indicate whether a person has 

Alzheimer's disease. In the self-attention 

mechanism, there is a weighted sum of values 

whose weights are computed dynamically based 

on the similarity between queries and keys. The 

formula of self-attention is given in equation [11], 

𝐴𝑡𝑡(𝑞, 𝑘, 𝑣) = 𝑠𝑜𝑓𝑡 (
𝑞𝑘𝑇

√𝐷𝑘
)  𝑣                                                                                           

[11] 

Where, 𝑞 denotes the queries that is represented as 

𝑞 = 𝑦𝑤𝑞with input data 𝑦and weight matrix 𝑊𝑞 , 

𝑘denotes the keys that is represented as 𝑘 = 𝑦𝑤𝑘 ,  

𝑣denotes the values that is represented as 𝑞 =

𝑦𝑤𝑣 , and the key dimensionality is denoted as 𝐷𝑘 . 

The self-attention mechanism is integrated with 

convolutional layers in Attention-Augmented 

Convolution. This is useful in processing medical 

images, where the model needs to simultaneously 

capture local features (via convolution) and global 

dependencies (via self-attention). 

The output of the attention-augmented 

convolution is denoted in equation [12], 

𝑂𝑢𝑡𝑝𝑢𝑡𝐶𝑜𝑛𝑣(𝑦) = 𝐶𝑜𝑛𝑣(𝑦) + 𝐴𝑡𝑡(𝑦)                                                                                   

[12] 

Where, the output from the regular convolution is 

denoted as 𝐶𝑜𝑛𝑣(𝑦), and the self attention output 

is denoted as 𝐴𝑡𝑡(𝑦). The discriminator is trained 

just to perform the appropriate assignment 

between real brain images and those generated by 

the generator during training. The generator is 

trained such that during training, its output is not 

distinguishable from real brain images and focuses 

on Alzheimer-specific features like brain atrophy 

because of the self-attention mechanism. The 

interaction of a stable training process from WGAN 

and the global dependencies capturing the ability 

of self-attention makes SAA-WGAN very effective in 

creating high-quality medical images and detecting 

Alzheimer's with high accuracy. The Wasserstein 

GAN framework, used for integration into SAA-

WGAN to create stable training for high-quality 

image generation, is further enhanced with a self-

attention mechanism to catch all important global 

dependencies for medical images. Therefore, the 

model essentially focuses equally on local features 

as well as long-range dependencies, making this 

particularly suitable for Alzheimer's detection. The 

loss functions are those that yield a high-quality, 

perceptually accurate image generation. 
 

Results and Discussion 
A simulation of the suggested SAA-WGAN method 

for AD stages classification is presented in this 

section. The suggested method was implemented 

on the Python platform, and the following 

performance metrics were assessed: accuracy for 

with augmentation and without augmentation, 

likewise precision rate, sensitivity rate, specificity 

value, ROC, and F-measure. Here, the suggested 

SAA-WGAN methodology is compared with 

existing methods such as, AlexNet-CNN (21), 

VGG16-CNN (22), and ADNet-DA (23) respectively. 

Metrics for Performance Evaluation 
Here, the efficiency of the SAA-WGAN methodology 

is analysed by various performance metrics such as 

accuracy with augmentation and without 

augmentation, likewise precision rate, sensitivity 

rate, specificity value, ROC, and F-measure. It needs 

parameters like True Negative(𝑇(𝑁)), True 

Positive(𝑇(𝑃)), False Negative(𝐹(𝑁)), and False 

Positive(𝐹(𝑃)).  

Accuracy measures the effectiveness of a 

classification model in accurately categorizing AD 

into correct categories, which can be computed 

using equation [13]. 

𝐴𝑐𝑐 =
𝑇(𝑁)+𝑇(𝑃)

𝐹(𝑃)+𝐹(𝑁)+𝑇(𝑃)+𝑇(𝑁)
                                                                                                      

[13] 

Precision estimates the extent of accurately 

anticipated positive examples out of all 

emphatically predicted samples, which is 

registered utilizing an equation [14], 

𝑃𝑟 𝑃𝑟 =  
𝑇(𝑃)

𝑇(𝑃)+𝑇(𝑁)
                                                                                                                         

[14] 

Recall measures the quantity of appropriately 

prophesied positive models out of entirely true 
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positive models in the given dataset that is 

computed based on equation [15]. 

=  
𝑇(𝑃)

𝑇(𝑃)+𝐹(𝑁)
                                                                                                                        

[15] 

F-measure is often used when there is an 

imbalance among the positive as well as negative 

samples or when there is a need to prioritize both 

precision and recall equally, which is calculated 

using equation [16]. 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2(× 𝑃𝑟𝑃𝑟 ) 

+ 𝑃𝑟
                                                                                                     

[16] 

 

 
Figure 4: Accuracy for Suggested Model (A) with Augmentation and (B) Without Augmentation Using the 

ADNI dataset 
 

 
Figure 5: Loss for Suggested Model (A) with Augmentation and (B) Without Augmentation Using the 

ADNI dataset 

Figure 4 and Figure 5 shows the connection 

between accuracy and loss for the Suggested Model 

before and after applying augmentation techniques 

using the ADNI dataset. As training progresses, the 

accuracy improves while the loss decreases, 

indicating effective learning and model 

convergence. This trend demonstrates the model's 

ability to accurately detect AD while reducing 

errors. 

Comparative Analysis 
In this study, the comparative analysis of the SAA-

WGAN methodology is explained. The performance 

metrics of the suggested SAA-WGAN methodology 

is compared with existing methods such as, 

AlexNet-CNN (21), VGG16-CNN (22), and ADNet-

DA (23) respectively. 
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Figure 6: Performance Analysis of Accuracy (A) Without Augmentation and (B) With Augmentation 

 

The accuracy comparison for without and with 

augmentation model is shown in Figure 6. Here, the 

SAA-WGAN methodology achieves higher accuracy 

rate as 99 % using augmentation approach and 

outperforms than other conventional techniques 

like AlexNet-CNN, VGG16-CNN, and ADNet-DA 

respectively. 

 

Table 3: Comparative Analysis of Performance Metrics 

Parameters AlexNet-CNN VGG16-CNN ADNet-DA Proposed 

Method 

 

 

Without 

augmentation  

Accuracy 90.23 91.49 95.29 98.11 

Precision 91.12 92.28 95.9 98.29 

Sensitivity 91.58 92.68 96.14 98.3 

Specificity 90.76 90.9 94.82 97.13 

F-measure 91.35 92.48 96.03 98.34 

 

With 

augmentation 

Accuracy 91.15 92.46 96.097 99.017 

Precision 91.96 93.16 96.4 99.11 

Sensitivity 92.3 93.5 96.66 99.16 

Specificity 91.56 91.8 95.34 97.90 

F-measure 92.17 93.34 96.56 99.13 
 

In Table 3, the performance comparison of 

different models for Alzheimer's detection is 

shown. The developed model consistently 

outperforms AlexNet-CNN, VGG16-CNN, and 

ADNet-DA in all metrics, both with and without 

data augmentation. The SAA-WGAN methodology 

achieves the highest accuracy as 99.017% and F-

measure as 99.13% with augmentation, indicating 

superior classification performance and 

robustness. Augmentation further enhances the 

overall performance across all models. 

 

 
Figure 7: Performance Analysis of ROC 
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Figure 7 shows the ROC curve comparison. Then, 

the ROC of the suggested method provides 4.56%, 

3.45%, and 2.63% greater AUC than other 

conventional approaches like AlexNet-CNN, 

VGG16-CNN, and ADNet-DA methods respectively. 

Integration into Clinical Practice 
● Clinical Collaboration: Partnering with 

healthcare professionals and institutions 

will facilitate the integration of our model 

into existing diagnostic workflows. 

● User-Friendly Interface: Developing an 

intuitive software interface will streamline 

the submission of imaging data and provide 

accessible classification results. 

● Training and Education: Ongoing training 

for clinicians will ensure their comfort with 

using the model and interpreting its 

outputs. 

● Regulatory Approval: Obtaining necessary 

regulatory certifications will ensure 

compliance with medical standards and 

patient safety. 

● Integration with EHR Systems: Our model 

should be compatible with existing 

Electronic Health Record systems to 

facilitate data sharing. 

Challenges 
● Data Quality and Availability: High-quality 

imaging data is essential, and variability 

across clinical settings may affect accuracy. 

● Interpretability of Results: Clinicians 

require interpretable outputs to trust the 

model's predictions. 

● Resource Constraints: Advanced models 

may require significant computational 

resources, which may not be available in 

smaller institutions. 

● Patient Privacy: Adhering to data privacy 

regulations like HIPAA is crucial when 

deploying AI in healthcare. 

● Establishing Clinical Validation: Continuous 

validation across diverse clinical 

populations is necessary to confirm the 

model's reliability. 

By addressing these strategies and challenges, we 

aim to enhance diagnostic capabilities for 

Alzheimer’s disease in clinical settings. Key 

improvements made in the manuscript include 

emphasizing the effectiveness of the SAA-WGAN 

model, which achieved a peak accuracy of 99% and 

outperformed conventional methods in metrics 

like AUC, Precision, and Sensitivity. Additionally, 

the use of pre-processing techniques (FGMF) and 

data augmentation were discussed in detail, 

showcasing their role in enhancing image quality 

and addressing class imbalances, as demonstrated 

in the results. 
 

Conclusion 
The Self-Attention Augmented Wasserstein 

Generative Adversarial Network (SAA-WGAN) has 

been successfully implemented to classify 

Alzheimer's disease (AD) stages using images from 

the ADNI database. Pre-processing with Fast 

Guided Median Filter (FGMF) enhanced image 

quality, while data augmentation techniques were 

employed to address class imbalances and increase 

training diversity. The model was validated with 

both augmented and non-augmented datasets at 

various batch sizes to assess its generalization 

capabilities. Comprehensive evaluations 

demonstrated that the SAA-WGAN method 

achieved an area under the curve (AUC) that 

exceeded traditional approaches, with 

improvements of 4.56%, 3.45%, and 2.63% 

compared to AlexNet-CNN, VGG16-CNN, and 

ADNet-DA, respectively. These findings highlight 

the effectiveness of the suggested model in 

enhancing classification accuracy and contribute to 

the advancement of diagnostic tools for 

Alzheimer's disease.  
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