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Abstract 
Traumatic Brain Injury (TBI) disrupts the brain’s usual functioning and can lead to temporary or permanent 
neurological defects. Detecting and treating TBI at an early stage can considerably improve the recovery time and avoid 
serious complications. Doctors rely on medical imaging to diagnose TBIs. As against the manual detection methods 
which may overlook subtle patterns resulting in inaccuracy and inconsistency, the computational methods can 
continuously adapt based on new data which improves the prediction model’s accuracy. Specifically, deep learning 
techniques are capable of extracting useful features from unstructured data such as medical images, without any need 
ad manual feature engineering However, the existing review papers discuss TBI detection using DL methods only in 
addition to the traditional and ML methods and fail to cover the vast variety of the recent DL algorithms. This review 
exclusively focuses on DL algorithms for TBI detection and encompasses cutting-edge DL models used in this domain. 
The choicest collection of articles unveils the potential of deep neural networks to process different types of inputs 
including numerical data EEG, CT and MRI scan images. This comprehensive overview offers a one-stop solution for 
the various research interest groups to get an understanding of the different techniques used and acquire valuable 
insights to conduct research in different disciplines ranging from image processing to advanced deep neural networks. 

Keywords: Artificial Neural Network (ANN), Brain Hemorrhage Classification based on Neural Network (BHCNet), 
Convolution Neural Network (CNN), Deep Learning (DL), Multi-Layer Perceptron (MLP), Recurrent Neural Network 
(RNN). 
 

Introduction
Traumatic Brain Injury (TBI) results from a sudden 

and forceful impact to the head or body usually 

caused by external forces (1). This causes a 

disruption to the brain’s normal functioning and its 

severity can vary from mild to severe resulting in 

either temporary or permanent neurological 

defects (2). It can cause numerous complications, 

including seizures, nerve injury, blood clots, and 

constriction of blood vessels, stroke, coma, and 

brain infections (3). TBI is a widespread concern 

for health, leading to high rates of mortality on a 

global scale. According to the data provided by the 

IHIF, India holds the highest global incidence of 

brain injuries (4). Over one and half million people 

in the US suffer from TBI, with higher vulnerability 

seen among adolescents aged 15 to 19 and adults 

aged 65 and above. These age groups are more 

prone to sustaining such injuries compared to 

other demographics within the population (5). The 

most accurate documentation for diagnosing a 

traumatic brain injury is typically obtained either 

at the time of the injury or within the initial 24-

hour window following the incident. This early 

assessment period is crucial for understanding the 

extent of the injury and initiating appropriate 

treatment strategies (6). TBI can lead to issues 

with numerous brain functions, and some may be 

temporary but others may be long lasting. Some of 

these problems do not appear until days or months 

after the injury. But early detection of TBI might be 

lifesaving. Hence it is very important to devise 

computational methods which can predict TBI as 

quickly as possible, as against the physical 

methods which are time consuming (7).  Though 

manual detection methods such as Glasgow Coma 

Scale (GCS), assessment tools like Providers 

Clinical Support System (PCSS) and length of coma 

were being used extensively for predicting TBI in 

the past, they can be inconsistent some- 
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times whereas computational methods are quite 

consistent in their analysis leading to accurate and 

faster diagnosis of TBI. Furthermore, the advent of 

diagnostic tools such as Magnetic Resonance 

Imaging (MRI) and Computed Tomography (CT) 

scans has resulted in the availability of a 

substantial amount of input data with which the 

automated algorithms can be trained, for better 

recognition of TBI patterns whereas manual 

detection methods may overlook subtle patterns 

resulting in inaccuracy and inconsistency. Lastly, 

the computational tools can continuously adapt 

based on new data which improves the accuracy of 

the prediction models. There are several review 

papers summarizing the various methods for TBI 

detection.  Commonly used Machine Learning (ML) 

algorithms for TBI detection are logistics 

regression, k-nearest neighbors (KNN), naive 

Bayes and Support Vector Machine (SVM) (8). A 

comprehensive study reported that ML methods 

outperform traditional methods for prolonged 

mechanical ventilation (PMV) risk prediction in 

TBI patients (9). Owing to the ability of deep 

learning techniques to excel in extracting 

unstructured data features like medical images, 

without any need for manual feature engineering, 

there are review papers highlighting the success of 

ML and DL in detecting intracranial hematoma, an 

elevated intracranial pressure, and midline shift in 

CT brain images (4), in automating TBI image 

interpretation, improving clinical management, 

and integrating precision medicine (10) and in 

radiology workflow optimization (11). With the 

availability of large, labeled datasets and 

computational resources, it is evident that Deep 

Learning (DL) models offer superior performance 

(12). However, the existing review papers discuss 

TBI detection using DL methods only in addition to 

the traditional and ML methods and fail to cover 

the vast variety of the recent DL algorithms. This 

review exclusively focuses on DL algorithms for 

TBI detection and covers state-of-the-art DL 

models used in this domain that can help the 

readers get an understanding of these techniques 

and acquire ideas for future research. TBI can be 

predicted or classified using inputs obtained from 

various brain imaging techniques. In this review, 

we have grouped the papers based on the input 

techniques used. The first one is EEG or 

electroencephalogram. An EEG test gauges the 

brain’s electrical activity using small metallic 

electrodes attached to the skull. Electrical impulses 

are used by brain cells to communicate, and they 

are always active, even while a person is sleeping. 

It counts as one of the diagnostic tests for epilepsy, 

brain disorders and traumatic brain injuries. The 

second input technique is called CT. A narrow 

beam of x-rays is directed at the patient which is 

quickly revolved around the body in this 

computerized x-ray imaging procedure, providing 

signals that the machine's computer processes to 

create cross-sectional images. Another important 

source of input data is MRI images. It is an imaging 

technology that generates 3-D anatomical images. 

It is based on detecting changes in the direction of 

the rotating axis of protons present in the water 

that makes up biological tissues. We have the 

‘others’ section which discusses the input 

techniques other than EEG data, CT and MRI 

images. These techniques include widefield 

imaging, recordings of cortical activity using 

specialized imaging, detailed brain strains using 

measured kinematics, mel-frequency and audio 

recordings. The organization of this paper is as 

follows: the following section provides a summary 

of the sources of articles considered for this 

review. Following that, papers that employ DL 

approaches to process EEG data are investigated 

and presented. The section that follows 

comprehends the papers that use CT images as 

input. Following that, DL models that work on MRI 

images were analyzed and presented. 

Subsequently, DL algorithms applied to other input 

data that do not fall into any of the above 

categories are discussed. Finally, conclusions from 

this review and future research directions are 

provided. 
 

Methodology 
We have systematically reviewed 88 research 

papers published from 1994 to 2023, to analyze 

various deep learning methods which helped in 

predicting Traumatic Brain Injuries. From Figure 

1, it can be seen that the majority of the papers 

were particularly from the years 2020-2022 to 

capture the latest advancements in the field. There 

are 13 papers from the year 2023, 25 papers from 

2022, 20 papers from 2021, 15 papers from 2020 

and 23 papers from the years 1994 to 2019. As 

shown in Figure 2, the papers included are from 

renowned publishers such as IEEE, NCBI, PubMed, 

Elsevier, Research Gate, Springer and MDPI. Few 

papers have also been included from NINDS and 
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PLOS. Our review is categorized based on the 

following input techniques: 1) EEG data 2) CT 

scans 3) MRI images and 4) other input techniques.
 

 
 Figure 1: Year-wise Count of Articles 

 

 
Figure 2: Count of Articles from Different Publications 

Diagnosis with EEG Data 
Traumatic brain injury (TBI) causes disruptions to 

the brain's normal functionality due to trauma's 

impact on the neural connectivity. 

Electroencephalography (EEG) is a type of 

neuroimaging technique that monitors the brain's 

electrical activity. It functions on the principle of 

brain waves (brain's electrical impulses) reflecting 

the communication between neurons eventually 

providing valuable insights into brain function and 

activity. This type of input data can detect 

abnormalities in the brainwaves including 

fluctuations in frequency, amplitude or patterns of 

electrical activity. Post TBI, EEG has a significant 

part in both identification and cure by aiding in 

preparation, assessment, monitoring, and 

understanding of brain function alterations. Table 

1 summarizes the different deep learning models 

that have been employed in the literature to work 

with EEG data. 

CNN 

A novel classification architecture was proposed 

for distinguishing TBI patients of mild to moderate 

category from healthy individuals utilizing a 

dataset comprising EEG recordings (age range 18-

65). This dataset was provided by Universiti Sains 

Malaysia Hospital, located in Kelantan, Malaysia 

(13, 14). The architecture used CNN and ECOC-

SVM. Two similar works carried out using CNN, 

processed 63×100 input matrices (13) and 63 x 

1000 input matrices (14) respectively, with six 3×3 

filters, using ReLU activation. Batch normalization 

was applied after the convolutional layer. A 2 × 2 

average pooling layer with a stride of one received 

six feature maps, each measuring 63 × 100. The 

average pooling layer subsampled the feature 

maps to six 31 × 50 maps. The six 31×50 feature 

maps were fed into fully connected layers (Layer 3 

and 4, 128 neurons, and Layer 5, three neurons). 

Training employed a fixed learning rate (0.001), an 

ADAM optimizer, L2 normalization, and mini-batch 

of 16. This model stated in the papers determined 
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mild (between 9 and 12) and moderate (between 

14 and 15) TBI as per the Glasgow Coma Scale 

(GCS). 99.76% of exceptional accuracy of 

classification was recorded for CNN ECOC-SVM. A 

comparative analysis resulted in the following 

order of accuracies: CNN ECOC-SVM>Naive Bayes 

> SVM(PSD) > Adaboost > SVM (power). A 

comparison was done between machine learning 

models, featureless models, and DL models to 

identify those providing improved performance in 

differentiating TBI, stroke, and normal states using 

EEG data (15). The EEG dataset was taken from 

The EEG Corpus from Temple University Hospital. 

The dataset consisted of 14,987 participants with 

26,846 clinical sessions of EEG, summing to 69,652 

files of EEG. Several featureless DL models such as 

LSTM, TMN and Short-time Fourier Transform 

(STFT) were also assessed in the study. The ADAM 

optimizer with initial training rate of 3 × 10^ (−4) 

was used. As a result, the precision was 77.9%, 

while the accuracy of validation was 68.9% 

between the TBI/Stroke/Normal categories. The 

area under receiver operating curve (AUCROC) for 

feature-based models was 0.85, whereas it was 

0.84 for featureless models. An automated 

approach was developed for classifying non-

severe TBI patients using EEG and DL (16). A CNN, 

employed for extraction of features from resting 

state EEG data. These features were then utilized 

to train hidden Markov models (HMM) for the 

classification of non-severe TBI patients. A 

classification accuracy of 85.5% was achieved by 

the proposed architecture. Other than prediction 

and comparison, many studies have also been 

conducted to learn about the specifics of TBI. One 

such study developed the ECI using a CNN based on 

diverse datasets (17). The ultimate dataset 

comprised of 15 UWS (Unresponsive Wakefulness 

Syndrome) patients (had severe traumatic brain 

injuries), 15 MCS (Minimally Conscious State) 

patients, and 4 MCS*(UWS patients that show 

similar brain activity to MCS patients). The TMS–

EEG data included participants during sleep, 

anesthesia, disorders of consciousness in patients, 

and resting-state EEG data. The CNN architecture 

included five convolutional layers with 2D filters, 

max-pooling layers, and a softmax layer. ECI, 

calculated by averaging interclass probabilities, 

effectively discriminated altered states of 

consciousness. The study demonstrated the ECI's 

effectiveness in assessing arousal and awareness 

in various conditions. 

MLP and RNN 
The automatic observation of EAs in patients with 

TBI using continuous EEG data from the 

EpiBioS4Rx study was investigated (18). The 

dataset included EEG recordings from 4 male TBI 

patients, with a mean age of 45.25 and a mean GCS 

of 8.25 upon reaching the department of 

emergency. Two deep learning models were 

proposed for EA detection: a RNN and a MLP. The 

RNN was designed to capture temporal aspects 

and consisted of two hidden layers with ReLU 

activation and LogSoftmax for output. Raw EEG 

data without preprocessing is segmented into 5-

second epochs and used to balance computational 

complexity and training sample size. RNN 

performed better than the Multi-Layer Perceptron 

in both two-class and four-class segmentation 

tasks. 

CNN for TBI Detection in Mouse 
The above papers used human EEG data for their 

studies. However, there is a similarity in nervous 

system organization and function between 

mammalian species and rodents, making them a 

favored system for studying analogues of human 

neurological disease. The focus was on diagnosing 

TBI in mice (aged 10 weeks, 25 grams, male) by 

classifying them into three groups: mild, moderate, 

and severe (19). The dataset of 9 mice employed 

was a recording spanning a full 24 hours 

comprising EEG dataset of a mouse TBI model, 

with just four mice having TBI. The EEG features 

were inputted into two sets of conv1D-pooling 

pairs, culminating in a dense layer followed by a 

softmax layer. Each convolution utilized a length of 

4, kernels numbered to 16, incorporating max 

pooling with a stride of 2. The last dense layer 

consisted of 40 nodes. Training employed 

categorical cross-entropy as the cost function, 

optimized with Adam optimizer and supplemented 

with regularization of L1. Results proved that the 

Convolutional Neural Network outperforms rule-

based methods for sleep stage analysis due to its 

temporal insight. Rule-based methods showed 

competitive accuracy with CNN for wake stage 

analysis. However, CNN achieved the highest 

accuracy of 92.03%. While the above paper 

categorized TBI severity, another study examined 

how mild traumatic brain injury (mTBI) affected 

mice's sleep patterns, categorizing them into four 
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groups: sham and mTBI wake, sham and mTBI 

sleep (20). These used Electroencephalogram data 

and a CNN model to classify these patterns. The 

dataset included 11 mice - 5 in the mTBI group and 

6 in the sham group, EEG data was captured at 256 

Hertz, resulting in 22,118,400 timesteps/mouse 

over 24 hours. Training consisted of 50 epochs 

with the Adam optimizer and default parameters. 

Global MaxPool1D downsampled its input by 

taking the highest value across the dimension of 

time. The final dense layer followed by softmax 

activation function performed the class prediction. 

Different results were obtained while combining 

different features: the feature dimension, width of 

EEG epoch and the number of filters. An accuracy 

of 81.5% was obtained when the epoch length was 

64s. Keeping the epoch length 64-s (RS data 

arrangement) and varying the filters and f_dim (64 

and 8 respectively), the best accuracy obtained 

was 82.6%, and for SA data arrangement, the best 

value from cross-validation folds was 57.1%. 

Deploying these results on an RPi model or HPC, an 

accuracy of 82.1% was obtained. A model for 

detecting mild TBI (mTBI) was developed utilizing 

Electroencephalogram data collected from a 

mouse model of lateral FPI (21). Mice were 

subjected to fluid percussion injury and EEG/EMG 

implantation. Animal tests (two groups: TBI and 

sham) were carried out on Ten-week-old male 

mice of C57BL/6J, weighing 25 grams. The features 

were sent to sixteen filters in a 1-D CNN layer with 

a size of 4 kernels and function of ReLU activation 

by the CNN. Subsequently, a MaxPooling layer with 

a stride of two reduced the signal length by half. 

CNN performed better than K-Nearest Neighbors 

(KNN) and its performance slightly increased as 

the epoch length increased. A model was 

developed to recognize TBI and automatically 

evaluate sleep stages using an 

Electroencephalogram of one-channel input (22). 

This dataset was obtained from the United States 

Centres for Disease Control as a component of a 

study that included eleven adult male mice divided 

into 2 groups: Sham and mTBI. Two different 

models were deployed on Raspberry-Pi—CNN and 

XGBoost. The EEG epochs were queued for 

processing to go through preprocessing, feature 

extraction, and classification. The results on the 

Raspberry Pi (RPi) were consistent with those of a 

HPC at various epoch lengths (16 s to 64 s). 

Accuracy for XGBoost showed a slight decrease 

(0.01%) with longer epoch sizes, while CNN's 

accuracy improved by approximately 7 percentage 

points with larger epochs.
 

Table 1: Deep Neural Networks for TBI Detection with EEG Data 

Authors Dataset Architecture Technique Performance 

Lai et al., (13) Hospital Universiti 

Sains, located in 

Kelantan, Malaysia. 

36 EEG recordings  

Fully connected 

layers 

Average pooling 

layer 

ReLU activation 

layer  

L2, batch 

normalization 

Adam optimizer 

CNN ECOC-

SVM 

CNN ECOC-SVM > Naive-

Bayes > (PSD)SVM > 

Adaboost  > (power)SVM 

Lai et al., (14) Hospital Universiti 

Sains, located in 

Kelantan, Malaysia. 

30 EEG recording (15 

healthy and 15 mTBI 

patients) recorded 

using 64 channel 

systems 

Convolutional layers 

- 6 

Pooling layers - 2 

Fully connected 

layer - 1 

 

CNN  Average classification 

accuracy - 72.46%. 

It consistently 

outperforms four other 

machine learning 

approaches: Naive 

Bayes, AdaBoost, SVM 

(MRMR), and SVM 

(power) 
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Caiola et al., 

(15) 

TUEG Version 1.2.0. It 

included 14,987 

patients with 26,846 

clinical sessions of  

Electroencephalogram, 

resulting in 69,652 

Electroencephalogram 

files (about 1,643 GB). 

ADAM Optimizer  

Learning rate -  3 × 

10^(−4) 

Epochs - 400 

Models 

used: TMN, 

LSTM, 

STFT 

AUROC with feature-

based models: 0.85 

AUROC with featureless 

models: 0.84  

Validation accuracy - 

68.9% 

Precision - 77.9% 

Lai et al., (16)   CNN classification accuracy of 

85.5%. 

Faghihpirayesh 

et al., (18) 

EEG recordings of 4 

male TBI patients 

2 hidden layers  

ReLU activation 

LogSoftmax for 

output. 

MLP and 

RNN 

Model performance was 

assessed using precision, 

sensitivity, F1-score, and 

accuracy metrics.  

RNN performed better 

than the MLP in both 

two-class and four-class 

segmentation tasks. 

 Vishwanath et 

al., (19) 

eC57BL/6j mice from 

Jackson Laboratory. 9 

mice were used, in 

which 4 mice actually 

had TBI and 5 were 

shams.   

Conv1D-pool pairs - 

2  

Dense layer (40 

nodes) and softmax 

layer 

Kernels - 16 

Adam Optimizer 

 

CNN CNN accuracy: 92.03%. 

CNN outperforms rule-

based methods (SVM, 

KNN,DT and RF) 

 

Sutandi et al., 

(20) 

The Jackson 

Laboratory. 

22,118,400 timesteps 

per mouse over 24 

hours. 

Adam optimizer 

1D convolution layer  

Global MaxPool1D 

Rectified Linear Unit 

(ReLU) activation  

Batch Normalization 

layer applied. 

CNN Accuracy : 81.5% (epoch 

length - 64s) 

Best accuracy : 82.6% 

SA data arrangement 

(best value) :  57.1%. 

Deploying  on an RPi 

model or HPC :  accuracy 

- 82.1% 

Vishwanath et 

al., (21) 

EEG data was collected 

from lateral FPI of a 

model mouse. 24 hour 

recording sampling 

rate: 256 Hz collected 

from each animal (TBI 

and sham). 

1D convolution layer 

ReLU activation 

functions  

MaxPooling layer   

Batch-normalization 

layer  

L1 regularization 

Adam optimizer 

CNN CNN performed better 

than rule-based models. 

Average of variances for 

cross-validation 

techniques: 

CNN : 0.92%  

KNN3 : 1.93% 

KNN5 : 1.94%  

KNN7 : 2.10% 

Dhillon et al., 

(22) 

U.S. Centers for 

Disease Control.   

Two 

implementations on 

RPi: 

Raspberry-

Pi CNN and 

XGBoost 

Accuracy for XGBoost 

showed a slight decrease 

(0.01%) with longer 
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1. CNN model 

2. XGBoost 

(gradient 

decision-

tree 

boosting 

model) 

epoch sizes, while CNN's 

accuracy improved by 

approximately 7 

percentage points with 

larger epochs. 

Diagnosis with Computed Tomography 

Images 
Computed Tomography (CT) scans are critical in 

the detection and assessment of TBI. When a 

patient experiences head trauma, CT imaging is 

often one of the primary diagnostic tools used by 

healthcare professionals. CT scans are 

indispensable tools in the detection and evaluation 

of TBI. They provide critical information for timely 

and effective decision-making in emergency and 

clinical settings, ultimately contributing to 

improved outcomes for TBI patients. 

ANN and Other Variants 
Data from the PECARN-CITBI study, which 

included children under the age of 18 who came to 

twenty-five North American emergency rooms 

within twenty-four hours of sustaining a head 

injury from June 2004 to September 2006, was 

investigated (23). After preprocessing, it contained 

15,271 entries and 85 characteristics, which 

included data labels. These features included 

information such as patient identifiers, physician 

details, data labels, clinical demographics, and 

Computed Tomography scan results being used on 

the models RF, deep ANN and shallow ANN. It 

combined a Random Forest (RF) feature selector 

with a shallow Artificial Neural Network (ANN) 

having three layers: input, hidden (30 sigmoid 

neurons), and output. Additionally used, a deep 

ANN with five layers, including three hidden layers 

with ReLU neurons. The paper summed up that 

ANN algorithms work well in identifying the 

existence of mTBI in the pediatric population. The 

study relied on data from the PECARN study, which 

prospectively investigated children with CRTBI 

(24). The PECARN TBI study enrolled individuals 

aged under 18 who had experienced non 

penetrating head trauma and had presented at the 

emergency department between 2004 and 2006, 

with a specific focus on classifying head CT imaging 

upon admission. Out of the 14,969 patients who 

underwent head CT scans, 12,902 had complete 

imaging data available for analysis. The study 

employed a 2-layer feed-forward ANN with 11 

sigmoid neurons in the hidden layer and softmax 

neurons in the output layer. The softmax activation 

function was utilized in the resultant layer of 

neural networks for classification tasks because it 

turned raw output scores into probabilities, 

making it appropriate for multi-class classification. 

A retrospective cohort study was orchestrated to 

develop an ANN predictive model for 

posttraumatic epilepsy in TBI patients (25). The 

purpose was to identify high-risk patients for 

improved management. The study employed a 3-

layer multilayer perceptron ANN model, utilizing 

21 independent variables. The training cohort 

comprised 1301 patients from West China 

Hospital, and testing was done on external cohorts 

from Shang Jin Nan Fu Hospital (with a sample size 

of 421) and Sichuan Provincial People’s Hospital 

(with a sample size of 413). The input dataset 

included demographic, clinical, and radiological 

data of TBI patients diagnosed between 2011 and 

2017. The ANN model exhibited a mean AUC of 

0.907 in the training cohort. Testing cohorts 

showed AUCs of 0.867 and 0.859, with sensitivities 

of 0.83 and 0.80, and specificities of 0.80 and 0.84, 

respectively. The architecture involved a back-

propagation learning algorithm, and model 

development included 5-fold cross-validation. The 

evaluation parameters were PPV, NPV, 

correctness, sensitivity, specificity, AUC and 

average precision. Brier scores were calculated to 

calibrate the model. The aim of the study was to 

tackle the overuse of Computed Tomography scans 

in cases of mild TBI by employing a deep ANN 

model to reproduce the clinical rule of the PECARN 

within a population of pediatricians (26). The 

study made use of data gathered from the PECARN 

study from 2004 to 2006, which contained a total 

of 14,983 patients below the age of 18 with 

Glasgow Coma Scale (GCS) scores greater than 14 

for those with head CT reports. The DANN model 

was trained using the PECARN rules' clinical 
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features (PECARN-A for age lesser than 2 years, 

PECARN-B for age greater than 2 years). In 

addition to this, an instance hardness threshold 

technique was used to predict whether the 

pediatric patients would need CT by the use of 5-

fold cross-validation. The DANN model showcased 

sensitivity of 98.6% and specificity of 99.7% for 

determining the requirement for CT, surpassing 

the PECARN rules combined in the phase one. In 

phase two, the DANN model outdid both PECARN-

A as well as PECARN-B rules when keeping into 

account predictors for each age group 

independently, achieving higher sensitivity and 

specificity in contrast to the original clinical rule. 

The study concluded that the DANN model showed 

excellent specificity and comparable sensitivity for 

reproducing the PECARN clinical rule in 

determining pediatric patients needed CT after 

mTBI. 

DNN, SNN and LRNet 
A study was conducted to predict outcomes after 

TBI in nations with low to moderate incomes using 

machine learning (27). Three models were 

developed: a DNN, a shallow neural network, and 

an elastic-net regularized logistic regression. 

These models used 13 readily obtained clinical 

factors to predict whether patients would have 

good or bad outcomes upon hospital release. The 

DNN model performed much better than other 

models in the area under the receiver operating 

characteristic curve. Whereas, the shallow neural 

network model excelled in the area under the 

precision-recall curve. The elastic-net LRnet 

demonstrated noninferiority to the neural 

networks in several comparisons. The research 

aimed to provide cost-effective and scalable 

prognostication solutions for TBI care in resource-

constrained settings. Predictors were opted 

depending on data accessibility and neurosurgeon 

consensus, focusing on variables easily collected 

during admission in low-resource settings, 

including age, GCS, vital signs, pupillary reactivity, 

mechanism of injury, and other binary categorical 

variables. 

CNN 
A CNN-based algorithm was developed to quantify 

and detect different lesion types (28). The first 

dataset comprised of 98 scans whereas the second 

dataset consisted of 839 scans collected from 38 

different centers, with 184 scans assigned for 

training data and 655 for the testing data. The CNN 

algorithm was utilized to fragment a new dataset 

of medical scans. This was followed by manual 

correction of the second dataset. A subgroup of 

these scans was used to train last CNN for 

multiclass lesion segmentation. CNN's lesion 

detection performance was externally validated on 

500 patients. CNN-derived lesion volumes showed 

mean differences of 0.86 mL (with a 95% 

confidence interval of -5.23 to 6.94) for 

intraparenchymal hemorrhage, 1.83 mL (with a 

95% confidence interval of -12.01 to 15.66) for 

extra-axial hemorrhage, 2.09 mL (with a 95% 

confidence interval of -9.38 to 13.56) for 

perilesional oedema, and 0.07 mL for 

intraventricular hemorrhage compared to manual 

reference measurements. DeepMedic and 

EfficientNet were used to address the critical issue 

of TBI detection (29). A dataset of 25,000 CT scans 

with 5 ICH subtypes, totaling 755,948 slices, was 

split into 740,829 training and 15,119 test slices. It 

included 82 CT scans (46 male, 36 female, avg. age 

27.8) with 34 slices each. Another dataset had 

30,000 slices, each 1.5 mm in thickness, from 

DICOM CT scans among which 143 were of normal 

brains and 178 were of TBI. The method combined 

EfficientNet-B2, DeepMedic, and a quantitative 

assessment algorithm, adjusting intensity 

windows (Brain, Subdural, Soft tissue). The system 

had 11 neural network layers and used an 

optimized DeepMedic model for CT scan multi-

class segmentation. It outperformed U-Net and 

UNet++ and was suitable for multi-class tasks. It 

achieved 98.62% accuracy on the CMU-TBI 

dataset, with 96.54% accuracy for Subdural 

Haemorrhage (SDH) classification and a 96.21% 

mean accuracy for all hemorrhage subtypes. The 

significant issue of brain stroke was tackled in a 

study (30). It involved categorizing the brain 

Computed Tomography scans into three groups: 

ischemic stroke, hemorrhagic stroke, and normal 

cases. They introduced an innovative CNN model 

with image fusion and a 13-layer architecture. The 

first dataset was received from the Himalayan 

Institute of Medical Sciences, Dehradun, India and 

was split into 20% for testing data and 80% for 

training data. On the contrary, the 2nd experiment 

utilized a ten-fold cross-validation on the dataset. 

The classification accuracy of the proposed CNN 

model was, reaching 98.33% in the initial 

experiment and 98.77% in the second. The study 

extended its investigation to Dataset 2 which 
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encompassed three categories: ischemic stroke, 

hemorrhagic stroke, and normal cases. The dataset 

consisted of 900 CT scan images from 74 people. 

The CNN model from the first experiment achieved 

a classification accuracy of 92.22%, outperforming 

the AlexNet and ResNet50. The second experiment, 

utilizing a ten-fold cross-validation, further 

validated the effectiveness of the CNN model, 

resulting in an accuracy of 93.33%. Limited data 

availability for medical imaging model training, 

due to constraints on transferring protected health 

information, was addressed in a study (31). They 

performed CT brain hematoma segmentation 

using datasets from the National Institutes of 

Health and Vanderbilt University Medical Center. 

Three distinct neural networks were trained: one 

on the data from NIH, one on the data from VUMC, 

and the third, a multi-site model alternating 

between NIH and VUMC data. The multi-site model 

demonstrated superior performance with a Dice 

similarity coefficient of 0.64. There was a 5% 

improvement in the segmented hematoma 

volumes over the single-site models, achieving a 

correlation of 0.87 with manually segmented 

volumes. The architecture was based on a 2D 

version of the Inception Net, incorporating 

convolution layers, ReLU activation, an adapted 

Inception Module, and final convolution with 

sigmoid activation. Training involved convergence 

based on a 1 × 10^−4 loss improvement criterion 

over 10 epochs, using a learning rate of 1 × 10^−4 

and the Adam optimizer, with the continuous Dice 

coefficient as the loss function for binary 

segmentation masks. The study concluded that 

multi-site learning enhanced model generalization 

and segmentation accuracy. A Computer-Aided 

Diagnosis algorithm for classifying TBI in CT 

images was presented in a study (32). The 

proposed algorithm, VGG-SE-PCR, integrated a 

novel neural network structure combining VGG-S, 

the Squeeze and Excitation (SE) module, and the 

Pixel-wise Correlation Retaining (PCR) module. 

Leveraging transfer learning to address limited 

datasets, the method achieved a classification 

accuracy of 89.3% on 636 brain CT images. 

Ablation experiments validated the efficacy of the 

SE and PCR modules, and comparative analysis 

showed superior diagnostic accuracy when 

compared to advanced methods for CT images of 

TBI patients. The primary focus was on improving 

the accuracy of predicting outcomes for 

individuals with TBIs, a crucial factor influencing 

treatment decisions, patient care, and post-

treatment follow-up (33). Important factors that 

have been found to be critical for predicting the 

outcomes of traumatic brain injuries include age, 

motor and pupil response, hypoxia, hypotension, 

and CT scan results. An expanded TBI outcome 

prediction model was fed lesion volumes and the 

information that went along with them. While 

comparing the efficiency of the proposed features 

with the established Marshall score, the 

automatically obtained quantitative CT features 

showed superior predictive potential compared to 

the Marshall score. The inclusion of automatic atlas 

alignment showed the importance of frontal extra-

axial lesions as indicators of unexpected outcomes. 

A postresuscitation Glasgow Coma Scale score of 8 

or below indicated severe TBI, which posed a 

serious risk with mortality rates as high as 40%. 

The possibilities of DL in prognostication for 

severe traumatic brain injury were investigated in 

a study (34). A customized CNN model architecture 

with an AlexNet backbone was utilized. Sub 

volumes from every CT scan, which covered the 

midbrain to the lateral ventricle, made up the 

input. With exception of the last completely 

connected layer, transfer learning was used for 

trainable layers. A customized curriculum learning 

technique was used for training. The fusion model, 

combining CT scans and clinical data, 

outperformed IMPACT in predicting both 

mortality (AUC 0.92) and unfavorable outcomes 

(AUC 0.88) in the UPMC cohort. The fusion model 

maintained predictive power for mortality (AUC 

0.85) in the more severe TRACK-TBI cohort but 

showed lower performance in predicting 

unfavorable outcomes. The focus was on the timely 

diagnosis of intracranial hemorrhage (ICH), a 

medical emergency associated with severe 

disability (35). The primary dataset came from the 

2019-RSNA Brain CT Hemorrhage Challenge, 

providing more than one million images from 

25,272 examinations. A CNN classifier trained on 

2D image slices was employed to determine the 

presence of ICH and its subtypes. Three backbone 

networks—SE-Resnext101, Densenet169, and 

Densenet121—were utilized for the CNN classifier. 

Performance evaluation on the RSNA test data 

showed robust results, with an ICH detection 

accuracy of 0.988 (AUC). Different sensitivity and 

specificity for individual ICH subtypes was 
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exhibited, with the highest accuracy of detection 

for Intraventricular Haemorrhage (IVH) (AUC: 

0.996, specificity: 0.974, sensitivity: 0.975) and the 

lowest for SDH (AUC: 0.983, specificity: 0.932, 

sensitivity: 0.946). The algorithm's validation on 

external datasets, PhysioNet-ICH and CQ500, 

demonstrated consistent performance with AUCs 

above 0.94 for most subtypes. A unique model of 

DL based on ICH diagnosis and classification was 

developed in a study (36). It utilized optimal image 

segmentation together with an Inception Network. 

Below the age group of 72 years, head CT scans of 

82 patients were included in the dataset. For the 

image segmentation, KT-EHO algorithm was 

applied to indicate the diseased portions. 

Recognition and categorization of ICH were done 

using Inception v4 optimized by Adagrad (AG) 

optimizer. Finally, an MLP model composed of the 

3 layers: input, hidden, and output layers was used 

as a classifier to identify the various ICH classes. 

For the CNN architecture, a feature map was 

constructed for the initial layer. The kernel size 

was 5x5 and stride was set as 1. Followed by that, 

convolution layers, activation layers, pooling 

layers, FC layers and SoftMax layers were applied 

one after the other. In comparison with models like 

WA-ANN, SVM, U-Net, WEM-DCNN and ResNexT, 

DL-ICH model had outperformed with a precision 

of 95.26% and an accuracy of 95.06%. A novel 

method referred to as BHC, based on Neural 

Network, was proposed in a study (37). The 

dataset used for this consisted of 200 CT scan 

images, evenly distributed between cases of those 

having brain hemorrhage and those with non-

brain hemorrhage. Initial steps involved image 

preprocessing, which included resizing the CT scan 

images to a standardized 128x128 pixel size and 

flipping. The architecture of the proposed BHCNet 

involved convolutional 2D layers, max-pooling 

layers, global average pooling layers, and dense 

layers. The aim of this design was to make it easier 

to extract features from CT scan images which is 

essential for classifying cases of brain hemorrhage. 

Balanced and imbalanced datasets were examined 

by the researchers. The unbalanced dataset 

strategy entailed boosting the number of positive 

cases, more specifically the brain hemorrhage 

instances in order to direct the model's attention 

towards false negatives. The outcome showed the 

productiveness of the proposed CNN model. For a 

balanced dataset, the CNN achieved an impressive 

95% accuracy after 24 epochs, demonstrating high 

precision (90.90%), sensitivity (100%), specificity 

(90%), and an F1-score of 95.23%. The metrics 

showed the efficiency of the model for accurate 

classification. The model effectively eliminated 

false predictions, particularly false negatives, 

contributing significantly to enhanced diagnostic 

accuracy with 100% sensitivity, 95.5% specificity, 

95% F1-score, 100% accuracy and 95.54% 

precision. 

Other Variants of CNN 
A completely automated technique that measured 

the volume of the basal cistern and the midline 

shift while accurately estimating the acute 

intracranial lesion volume was proposed in a study 

(38). The data from the CENTER-TBI study was 

used, which involved around 5000 patients from 

various hospitals. The data was divided into three 

groups based on patient care paths: ER, admission, 

and ICU. Different CT scanners with varied imaging 

parameters were used. U-Net–based CNN was used 

for the segmentation of acute intracranial lesions 

in TBI patients. The focus was on validation and 

performance of this automated method using a 

multi-center dataset from the CENTER-TBI study. 

The study concluded that the proposed automated 

framework, "icobrain" utilizing a U-Net–based 

CNN, is a reliable tool for quantifying CT features in 

acute TBI cases. The method accurately segmented 

and estimated volumes of intracranial lesions, 

basal cisterns, and midline shifts on CT images. 

Validation using a multi-center dataset showed 

good agreement with expert reference 

segmentations, suggesting its potential value in 

clinical evaluation and large-scale TBI studies. The 

goal was to identify and evaluate intracranial 

bleeding, a serious side effect of TBI (39). The 

study's objectives included segmentation and 

estimating the amount of blood involved in 

cerebral hemorrhage. A radiologist had labeled 27 

CT pictures of a patient who had suffered an 

intracranial hemorrhage. The acquired CT data for 

the skull measured five millimeters thick, with 512 

× 512 pixels making up each picture. It explained 

how to use Dynamic Graph CNN architecture for 

volumetric medical image analysis. Multiple 

EdgeConv layers were used to extract features, and 

pooling layers were used to acquire global features 

for jobs including both segmentation and 

classification. Using this architecture to segment 

and forecast bleeding in CT images was the 
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objective of the project. The highest sensitivity 

bleeding segmentation was 98%. A DL-based 

model for the accurate detection of TBI was 

developed in a study (40). The data was gathered 

from 226 subjects which included 175 TBI patients 

and 51 normal individuals. Demographics showed 

differences in age and gender mostly in middle-

aged and male groups. CT images of 512x512 

pixels are cropped to 224x224 pixels, with 30 

slices per image. Data augmentation doubled the 

images to prevent over fitting. Five-fold cross-

validation method was used to split the data into 

training, validation, and test sets, totaling 1574, 

197, and 197 images, respectively. The paper 

combined a ResNet-based CNN with a Squeeze and 

Excitation module, and RNN using LSTM. Ablation 

experiments were conducted on four network 

architectures (ResNet18, SENet, ResNet18+LSTM, 

SENet+LSTM) using the proposed dataset. 

Transfer learning improved accuracy and 

convergence speed. SENet+LSTM achieved the 

accuracy of 95.9% which was the highest among 

other models, with 93.3% sensitivity and 98.9% 

specificity. The lower sensitivity might have been 

due to the larger amount of injury data during 

training, leading to more learned positive features. 

A unique automatic method for segmenting the 

bleeding subtypes on a Computed Tomography 

scan, using an integrated CT scan with a bone 

window as input for a deep learning network, was 

suggested in a study (41). The classes were non-

hemorrhage, Subdural Haemorrhage (SDH), 

Epidural Hemorrhage (EDH), Intraparenchymal 

Haemorrhage (IPH), combination of SDH and EDH, 

combination of SDH and IPH, combination of EDH 

and IPH and combination of the three hemorrhage 

subtypes. A 3D- CNN called Deep Medic was used. 

The input was a 2-channel voxel using CT scan 

subdural and bone window settings. To enhance 

the outcomes, post-processing methods including 

region-growing and size-based filtering are used. It 

achieved moderate DSCs at the slice level, with the 

highest for EDH (0.71). Patient-case DSCs were 

slightly lower. Comparisons between different CT 

scan settings showed similar results, with notably 

higher specificity when both windows were used. 

Applying post-processing improved results, 

maintaining comparable DSCs and sensitivities 

while enhancing specificity for SDH in the 

combined window setting. The segmentation 

method demonstrated improved performance 

compared to previous studies, achieving higher 

Dice similarity coefficients. Research was 

conducted to compare the performance of a DL 

model in radiology and in emergency medicine 

with neurosurgery residents in detecting and 

localizing intracranial hemorrhage resulting from 

TBI (42). A deep learning model was used for 

segmenting intracranial hemorrhages, including 

subdural hematoma, epidural hematoma, and 

intraparenchymal hemorrhage from non-contrast 

head Computed Tomography scans. The model 

generates segmentation results for different forms 

of hemorrhage based using input from subdural 

and bone windows on a two-channel voxel. With an 

overall accuracy of 0.89, the deep learning model 

outperformed residents in terms of sensitivity 

(0.82) but lagged significantly behind in terms of 

specificity (0.90). When it came to identifying SDH, 

the deep learning model was the most accurate 

(sensitivity = 0.85). The model demonstrated 

superior sensitivity in ICH detection in various 

subtypes compared to the average performance of 

the residents. Important clinical characteristics 

linked to the risk of TBI in very young children, a 

challenging population to assess due to limited 

verbal ability and developmental factors, were 

identified in a study (43). The PermFIT framework 

was employed, and the study included 42,412 

participants, with 10,718 children (under the age 

of two years). The analysis focused on 1,429 

children under two years with completed 

Computed Tomography scans and no missing 

values for the 24 clinical features. Various models, 

including random forest, support vector machine, 

deep neural network, and XGBoost were 

compared. Among these, the DNN model 

demonstrated superiority. It identified 9 

significant features and performed better than 

other methods with accuracy of 0.915, AUC 0.794, 

and precision-recall area under the curve as 0.974. 

Associations between CT markers of diffused 

intracranial injury and high-frequency physiology 

in TBI patients were explored in a study (44). 

Utilizing the HR ICU sub-study cohort of CENTER-

TBI, including 11 patients, they examined Twenty-

Five Computed Tomography lesion variables in 

comparison with high-frequency physiology 

parameters. The logistic regression model analysis 

revealed a connection between deep peri-

contusional edema and impaired cerebrovascular 

reactivity, as assessed by mean pressure reactivity 
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index (PRx) above the defined thresholds. The 

study utilized arterial blood pressure 

measurements and employed a altered version of 

Deep Medic, a 3D CNN, for CT image processing, 

demonstrating consistent correlations between 

diffuse IC injury patterns and compromised 

cerebrovascular reactivity. Table 2 lists the 

findings of these works.
 

Table 2: Deep Neural Networks for TBI Detection with CT Scan Images 

Authors Data Used Architecture Technique Results 

Ellethy et al., (23) 15,271 -Random Forest feature 

selector with shallow 

ANN having three layers 

-a deep ANN with five 

layers, including three 

hidden layers with 

rectified linear unit 

neurons 

ANN ANN works well in 

identifying existence 

of mTBI in children 

Hale et al., (24) 14,969 -Instance hardness 

threshold algorithm 

using 5-fold cross-

validation 

-DANN 

ANN  Constructed a highly 

sensitive tool to 

diagnose CRTBIs 

Wang et al., (25) 1301 TBI 

patients at 

West China 

Hospital 

-3-layer multilayer 

perceptron ANN model 

-Back-propagation 

learning algorithm 

included with 5-fold 

cross-validation. 

ANN ANN prediction 

model had a higher 

accuracy compared 

to nomogram model 

Ellethy et al., (26) 14,983 scans of 

< 18 years 

-DANN model with 

clinical features of the 

PECARN rules 

-Instance hardness 

threshold algorithm 

using Five-fold cross-

validation 

ANN DANN model 

replicates the 

PECARN rule, 

showing similar 

sensitivity and better 

specificity in 

predicting pediatric 

CT need for mild TBI 

than the original 

rule. 

Adil et al., (27) -TBI patients a 

tKampala, 

Uganda, from 

2016 to 2020 

-13 clinical 

variables as 

predictors 

-2164 patients 

used for model 

training 

-DNN 

-Elastic-net regularized 

logistic regression 

-Shallow neural network 

DNN, SNN 

and LRNet 

SNN performed best 
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Miguel et al., (28) CENTER-TBI 

dataset 

1:  98 scans 

2: 839 scans 

-segment a fresh dataset 

of scans automatically 

-correct manually 

-dataset of images to 

train the final CNN for 

multiclass, voxel-wise 

lesion type segmentation 

CNN -CNN-derived lesion 

volumes - mean 

difference of  

● 0·86 mL for 

intraparenchym

al hemorrhage 

● 1·83 mL for 

extra-axial 

hemorrhage 

● 2·09 mL for 

perilesional 

oedema 

● 0·07 mL for 

intraventricular 

hemorrhage. 

Phaphuangwittayakul 

t et al., (29) 

public datasets:  

1: RSNA 2019 

Brain 

Hemorrhage 

Challenge 

(755948 scans) 

2: PhysioNet 

(2814 scans) 

private dataset:  

3: CMU-TBI 

(19946 scans) 

DeepMedic and 

EfficientNet. 

11 NN layers, optimized 

DeepMedic model for 

multi-class segmentation 

on CT scans 

CNN -Accuracy:  

● 98.62% CMU-TBI 

dataset  

● 96.54% SDH 

classification 

● 96.21% for all 

hemorrhage 

subtypes(averag

e) 

● -outperformed U-

Net and UNet++ 

Gautam et al., (30) HIMS 

 

1: Ischemic 

images 

2:Hemorrhagic 

stroke images 

Image fusion for better 

classification results 

CNN -Accuracy: 

● Dataset 1: 

● Experiment 1- 

98.33%  

● Experiment 2- 

98.77%, 

● Dataset 2:  

● Experiment 1- 

92.22%  

● Experiment 2 - 

93.33% 

-proposed CNN 

model performed 

better than  AlexNet 

and ResNet50  

Remedios et al., (31) -NIH and 

Vanderbilt 

University 

Medical Center 

-27 scans by 

CNRM and NIH, 

18 scans in de-

-2D Inception Net-based 

model with ReLU 

activation and modified 

Inception Module. 

-Secure server-based 

framework for private 

data access, allowing 

CNN -average Dice 

similarity coefficient 

of 0.64 
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identified form model training without 

sharing datasets 

Zhang et al., (32) 636 images -VGG-SE-PCR neural 

network for computer-

aided diagnosis of TBI 

integrated with VGG-S 

and a module that 

retains association 

between pixels 

CNN -Accuracy: 89.3% 

-better performance 

in terms of 

diagnostic accuracy 

when as opposed to 

alternative state-of-

the-art methods 

Rosnati et al., (33) Routinely-

acquired 

hospital 

admission CT 

scans 

cutting-edge deep 

learning Segmenting TBI 

lesions to identify 

imaging biomarkers 

CNN -automatically 

extracted 

quantitative CT 

features showed 

comparable/superior 

predictive 

capabilities 

compared to 

Marshall score 

Pease et al (34) 537 -Transfer learning - for 

all trainable layers 

(excluding the final fully 

connected layer (FC8)) 

-Holistic prediction of 

long-term outcomes 

after severe TBI by 

combining information 

from CT scans and 

clinical data. 

CNN -fusion model 

maintained its 

predictive power for 

mortality (AUC 0.85)  

-showed a lower 

performance for 

predicting 

unfavorable 

outcomes 

Wang et al.,  (35) 25,272 SE-Resnext101, 

Densenet169, and 

Densenet121— utilized 

for CNN classifier 

CNN -Highest detection 

accuracy - IVH (Area 

Under Curve: 0.996, 

specificity: 0.974, 

sensitivity: 0.975)  

-Lowest for SDH 

(AUC: 0.983, 

specificity: 0.932, 

sensitivity: 0.946). 

Mansour et al., (36) 82 of <= 72 

years 

-KT-EHO algorithm was 

applied to indicate the 

diseased portions 

- Adagrad (AG) optimizer 

optimized Inception v4 

for classification and 

identification 

CNN Precision: 95.26%  

Accuracy: 95.06% 

DL-ICH model 

outperformed WA-

ANN, SVM, U-Net, 

WEM-DCNN, 

ResNexT 
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Mushtaq et al., (37) 200 -Adagrad (AG) optimizer 

optimized Inception v4 

for classification and 

identification. 

-Max-pooling, global 

average pooling, dense, 

and convolutional 2D 

layers make up BHCNet. 

CNN Accuracy : 95% after 

24 epochs, 

Precision: 90.90% 

Sensitivity: 100% 

Specificity: 90% 

F1-score: 95.23%. 

Jain et al., (38) 5000+ U-Net–based CNN CNN -Icobrain(utilizing a 

U-Net–based CNN) is 

a reliable tool for 

quantifying CT 

features in acute TBI 

cases 

Irene et al., (39) -27 head 

Computed 

Tomography 

scans  

(from the Cipto 

Mangunkusumo 

National 

General 

Hospital) 

-Dynamic Graph CNN 

-Multiple EdgeConv 

layers 

CNN Sensitivity: 97.8%  

Specificity:  95.6% 

Absolute percentage 

error: 99.95 

Chao et al.,(40) 226 (175 TBI 

patients and 51 

normal 

individuals) 

-ResNet-based CNN with 

a Squeeze and Excitation 

module 

-RNN using LSTM. 

CNN 

RNN 

-SENet+LSTM - 

highest Accuracy: 

95.9%   

Sensitivity: 93.3%, 

Specificity: 98.9%  

-Our TBI dataset is 

positively impacted 

by the SE module 

and LSTM. 

Inkeaw et al., (41) CT scans 

 

1.5 mm slide 

thickness 

-DeepMedic CNN -The median 

sensitivities with IQR 

for SDH, EDH, and 

IPH were 0.58 (0.57), 

0.64 (0.72), and 0.35 

(0.77), respectively, 

and for ICH they 

were 0.70 (0.51). 

-Median specificity: 

higher than 0.99 

Angkurawaranon et 

al., (42) 

- There were 

300 head CT 

investigations 

in all 

-166 of them 

-Model can segment 

EDH,  SDH, and IPH on a 

Computed Tomography 

scan (a variant of the 

DeepMedic model) 

CNN -DL model - most 

sensitive in detecting 

SDH with a 

sensitivity of 0.85  

-Accuracy: 0.89  
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fell into the ICH 

group 

-134 of them 

fell into the 

non-ICH group. 

-Has four parallel 

channels to handle the 

input at various 

resolutions. 

-Sensitivity: 0.82 

-Specificity: 0.90 

Zou et al., (43) -42,412 

participants 

10,718 children 

under 2 years. 

-Analysis 

focused on 

1,429 children 

with completed 

CT scans and no 

missing values 

for the 24 

clinical features 

-PermFIT framework 

was employed 

-logistic regression 

model is used 

PermFIT-

DNN 

-Accuracy: 0.915 

AUC: 0.794 PR-AUC: 

0.974 

-The DNN model was 

the most effective 

framework, 

outperforming other 

techniques including 

RF, XGB, and SVM.i.e 

RF, XGB, and SVM 

Zeiler et  

Al., (44) 

165 patients - 

CENTER-TBI 

HR ICU 

25 CT lesion variables 

 

PermFIT-

DNN 

-Significantly 

enhanced PRx at 

threshold 0 was seen 

in patients with an 

age mean of 51.4 vs. 

41.4 years, a higher 

Rotterdam 

Computed 

Tomography  score, a 

bigger extra-axial 

hematoma volume 

(31.0 vs. 13.3 cm³), 

and a higher cortical 

contusion edema 

volume (8.3 vs. 4.4 

cm³). 

-The only CT 

characteristic that 

was shown to be 

substantially 

correlated with 

higher percentage 

time and hourly 

dosage beyond the 

PRx threshold was 

sternal compression 

(p < 0.002). 

 

Diagnosis Using MRI Images 
The complex nature of Traumatic Brain Injury 

requires accurate diagnostic tools to ensure 

optimal patient care. MRI helps to study the brain 

structure and its functions for a patient suffering 

with TBI. Recently, the medical field has seen a 

revolutionary shift with the incorporation of deep 

learning methods which have offered wonderful 
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opportunities in analyzing complex MRI data for 

predictive models. This section explores the 

current state of deep learning applications in 

predicting TBI using MRI scans and briefs these 

works in Table 3. 

MLP 
Data from a nationwide study in Taiwan on 

traumatic brain injuries (TBI) were utilized to 

determine the need for open-skull surgery (45). 

The dataset consisted of 12,640 cases, with 75% 

randomly chosen for training and 25% for testing. 

The initial model employed was a multi-layer 

perceptron (MLP) neural network including an 

input layer (consisting of Eleven nodes), a hidden 

layer (comprising 7 nodes), and a single node 

output layer.  Another model was an RBF neural 

network consisting of a lone hidden layer. Both 

neural network models consistently outperformed 

a logistic regression model, with the MLP achieving 

an ROC area of 0.897 and the RBF network 

achieving 0.880. This suggests the effectiveness of 

MLP and RBF neural networks in predicting the 

need for open-skull surgery in TBI patients. 

CNN 
Convolutional Neural Network is mainly used for 

processing and analyzing visual data. It comprises 

three layers called convolutional, pooling and a 

fully connected layer. CNNs can analyze medical 

images such as CT scans and MRIs which are 

commonly used to diagnose and evaluate the 

severity of TBI. Further we can also extract 

relevant features from these medical images aiding 

in the detection and classification of TBI as well as 

assess the severity and location of injuries. They 

can be used to predict the potential outcomes and 

recovery trajectories of individuals with TBI. This 

information can assist healthcare providers in 

making more practical decisions about treatment 

and rehabilitation. Several studies have 

successfully introduced CNN models designed for 

segmenting lesions and contusions within MR 

images of the brain in TBI patients. A CNN model, 

employing a unique architecture known as 

Inception, developed by Google, was presented in 

a comparative study (46). A three layer Inception 

network was used to segment lesions from multi-

contrast MR images. The model showed better 

accuracy results on the images of 18 TBI patients 

when contrasted with two other TBI lesion 

segmentation methods, one developed on the basis 

of Deep Medic and the other developed on random 

forests. The network utilized a series of cascading 

modules, each of which was a modification of the 

Inception module. They introduced a modification 

by adding an additional pathway with an average 

pooling layer followed by 3×3 convolutions. The 

addition of average pooling offered a lower-

resolution feature map without down sampling the 

image, which has practical implications elaborated 

upon later. On average, the RF algorithm tended to 

produce under-segmentation, while Deep Medic 

tended to over-segment and generate more false 

positives. The above study used the Deep Medic 

model for successful segmentation of lesions in the 

brain of patients suffering from Traumatic Brain 

Injury. The Deep Medic model was utilized to 

implement CNNs for predicting fiber tract masks in 

a study (47). Each of the 12 fiber tracts was 

individually trained using a separate 

Convolutional Neural Network (CNN). Deep Medic 

addressed class imbalances by segmenting images 

for training and ensuring an undivided focus on 

background and foreground voxels. This 

adaptation was automatic, helping to improve 

model performance in situations with varying class 

distributions. Deep Medic initialized its network 

weights using a normal distribution, employed a 

Parametric Rectified Linear Unit nonlinearity for 

input units, utilized a cross-entropy loss function 

that simultaneously evaluates predictions across 

multiple voxels, and optimized the network 

weighted units through stochastic gradient 

descent. A deep learning method utilizing a 

Siamese Network to acquire a distinct feature 

representing classification of individual-subject 

ICA components was introduced in a study (48). 

Siamese Networks represent a distinct form of 

deep learning architecture consisting of a 

minimum of two identical neural networks called 

encoders. Their parallel structure enabled the 

model to grasp similarity relationships, which can 

replace direct classification. During inference, the 

network took sets of images (usually two or more) 

and calculated the distance between them. The 

distance computed was learned from the training 

data, which specifies small distances for images 

from the same category (RSN) and large distances 

for images from different categories. A deep 

learning framework for extracting intracranial 

tissues from MR images in mild or severe TBI cases 

was developed in a study (49). They employed a 

CNN framework that was tested on a dataset 
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comprising 19 human patients with varying TBI 

severity, 16 normal mice, and 10 mice with 

repeated TBI. Evaluation against three brain 

extraction techniques showed significant accuracy 

improvement in both human and rodent images, 

highlighting the method's versatility and 

effectiveness. Dynamic functional connectivity 

(dFC) was investigated to analyze the impact of 

traumatic brain injury on large-scale neuronal 

networks in a study (50). The study included 

healthy controls and participants with mild to 

severe TBI. Functional MRI data were collected 

during a cognitive task, and preprocessing 

involved steps like repairing bad slices, slice time 

correction, realignment, and despiking. 

Independent component analysis (ICA) was used 

for brain parcellation, resulting in 44 components 

for both static and dynamic connectivity. The study 

revealed that the probable frequency of entering a 

specific state during Run 1 predicted the frequency 

during Run 2 for both TBI and healthy controls. 

However, the TBI group showed fewer state 

transitions, indicating reduced network dynamics 

compared to healthy controls. 

Other Variants of CNN 
An algorithm called MU-Net-R, which uses an 

ensemble of U-Net-like CNNs to automatically 

segment the hippocampus of normal and injured 

rats, was developed in a study (51). The CNN 

featured an encoder/decoder structure with skip 

connections, and pooling and unpooling 

operations for effective feature mapping at 

different resolutions. Each block in the 

architecture included three iterations of ReLU 

activation, convolution, and batch normalization, 

contributing to the precision of the segmentation 

strategy. They made different choices for filter 

dimensions based on each dataset and for 

segmenting images with anisotropic voxel sizes, 

2D convolutions were preferred. Unlike MU-Net, 

which consistently utilizes 64-channel 

convolutions and 5x5 filter sizes, their design 

varies the number of convolution operations and 

filter sizes. These changes resulted in a significant 

reduction in the total number of parameters, going 

from 2,087,944 (for 2D) and 10,286,344 (for 3D) in 

the case of MU-Net, down to 428,436 and 

1,125,716, respectively in their model. This 

approach allowed them to achieve equivalent 

segmentation quality to MU-Net while employing 

fewer parameters. A comprehensive study 

focusing on the detection of cerebral micro bleeds 

(CMBs) as biomarkers for traumatic axonal injury 

(TAI) in traumatic brain injury (TBI) cases was 

conducted in a study (52). They developed a 

classification model called Patch-CNN and two 

segmentation approaches (Segmentation-CNN and 

U-Net) for CMB detection. The 3D-FRST (Fast 

Radial Symmetry Transform) was employed for 

initial CMB candidate detection. Traumatic CMBs 

can have varying shapes, so careful consideration 

was given to hyper parameter selection for 3D-

FRST. Identified points of interest by 3D-FRST 

served as central points for creating 3D patches 

(21x21x21 dimensions). These patches were used 

to train the Patch-CNN model to distinguish true 

lesions from false positives. The Segmentation-

CNN model shared the same architecture as the 

Patch-CNN model, including the kernel sizes, the 

feature volumes of the filters, and the number of 

convolutional layers. The sole architectural 

difference lies in the exclusion of the dropout layer. 

This decision was based on the understanding that 

the dropout layer wasn’t essential for enhancing 

generalization in segmentation tasks. The primary 

contrast between these models was the 

dimensions of their input as well as output layers, 

which consequently affected the size of 

transitional layers. The U-Net model was based on 

the 3D-Unet model. The original model was 

initially created for wide scale volume 

segmentation tasks. In contrast, their specific 

objective was to segment small structures, such as 

Cerebral Micro bleeds (CMBs). To align the 

network with their task, they made several 

adjustments. In terms of network structure, they 

made a few changes compared to the original 

model. Their model featured two pooling layers 

instead of three. Additionally, they introduced an 

intermediate layer with a 1x1x1 kernel into their 

skip connections. These modifications helped in 

enhancing the activation energies between the 

encoder and decoder layers to ensure that the 

network is suitable for their specific task. Three 

dimensional Convolutional Neural Networks (3D-

CNN) plays an important role in the development 

of prediction models for TBI. The utilization of 

advanced deep learning architectures enables 

these models to recognize certain subtle 

alterations which indicate traumatic brain injuries. 

Leveraging volumetric data, 3D-CNNs exhibit 

heightened sensitivity in detecting traumatic 
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lesions, enabling precise localization and 

characterization. The integration of 3D-CNNs in 

the predictive modeling of Traumatic Brain Injury 

delineates their role as sophisticated tools at the 

confluence of artificial intelligence and medical 

imaging, promising advancements in diagnostic 

precision and, consequently, improved clinical 

outcomes for individuals affected by traumatic 

brain pathologies. A Three-Dimensional CNN for 

brain lesion segmentation was proposed in a 

comprehensive study (53). Their lesion 

segmentation method comprised two main 

components, a 3D CNN that was responsible for 

producing extremely accurate segmentation maps 

and a 3D CRF (Conditional Random Field) that 

enforced regularized constraints on CNN outputs 

in order to produce hard segmentation labels. 

Furthermore, they explored the development of 

deeper 3D CNNs, which can provide greater 

discrimination. Their design incorporated a dual 

pathway architecture that concurrently processed 

multiple-scaled input images. They integrated a 

fully connected 3D CRF which eliminates false 

positives effectively. 

Other Deep Learning Models 
Conventional Deep Learning models play a pivotal 

role in the prediction of TBI by leveraging intricate 

patterns within medical imaging data, such as MRI 

scans. By training on diverse datasets, these 

models can discern subtle abnormalities indicative 

of TBI. The integration of these models in TBI 

prediction not only enhances diagnostic accuracy 

but also contributes to the ongoing effort to 

establish non-invasive, efficient tools for early 

detection and prognosis in the clinical 

management of traumatic brain pathologies. An 

illustrative instance was found in some 

experiments where a deep learning model based 

on a CNN with residual learning architecture was 

assessed (54). This model was specifically 

designed for the prediction of Traumatic Brain 

Injury (TBI) severity utilizing information 

extracted from magnetic resonance (MR) images. 

When tested with different subjects of varying TBI 

levels, the model achieved greater accuracy and 

sensitivity results as compared to others. This 

process entailed expanding the image dataset 

through a variety of transformations that maintain 

the original labels. These transformations resulted 

in multiple distinct versions of the original images, 

achieved through techniques such as gamma 

correction, translation, rotation, random noise 

injection, scaling, and random affine 

transformations. The residual learning model 

utilized ResNet-50 CNN architecture. The ResNet 

architecture tackles the disappearing gradient 

issue in deep Convolutional Neural Networks by 

incorporating connections that create direct links 

from shallow to deeper layers. These connections 

allow the network to understand residual 

information, acting as a form of boosting. Here a 

basic building block is expressed as y = F(x, Wi) + 

x; here x and y represent input and output vectors, 

and F is the residual mapping. Matching 

dimensions between x and F is crucial, and a linear 

projection Ws may be applied through a shortcut 

connection if needed: y = F(x, Wi) + Wsx. Transfer 

learning is employed by fine-tuning a pre-trained 

ResNet-50 on a large dataset and then adapting it 

to the smaller Traumatic Brain Injury (TBI) MRI 

data. The weights of ResNet-50 layers remain 

fixed, and only the fine-tuning layers are trained 

with randomly initialized weights, leveraging 

knowledge from the pre-trained model for 

improved learning. In a comprehensive study, an 

auto encoder was introduced to observe changes 

in the spatial properties of structural and 

functional brain networks in children who 

experienced Traumatic Brain Injury (55). The 

structural MRI data of each individual underwent 

preprocessing steps, including motion correction, 

removal of non-cerebral voxels, and intensity 

normalization. Addressing head motion was 

crucial, as significant movement could impact 

imaging data quality and lead to inaccurate 

tractography results. Instances of substantial head 

movement were defined and resulted in the 

exclusion of specific subjects from the study. The 

research aimed to explore the model's capability to 

predict post-TBI attention deficits. A two-stage 

framework was proposed for efficient and accurate 

detection of cerebral micro bleeds (CMBs) in 

medical imaging by a comprehensive study (56). 

The first stage utilized a 3D FRST on composite 

Susceptibility Weighted images for candidate 

detection. The second stage involved a deep neural 

network trained on 154 datasets and tested on 41 

cases. The model achieved a 95.8% sensitivity rate, 

70.9% precision, and 1.6 false positives per case. 

Trained on a dataset comprising 220 cases from 

various studies, the model demonstrated 

performance comparable to experienced human 
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raters and ousted other recent CMB detection 

methods. Another comprehensive study on 

traumatic brain injuries (TBI) aimed to address the 

rising incidence of TBI globally, with a minimum of 

50 million cases of TBI occurring annually (57). 

Patients with severe TBI often face grim prognostic 

outcomes, leading to physical disabilities and 

joblessness. Traditional therapeutic options, 

including surgical procedures, medicines, and 

exercises, have reduced capabilities due to 

complications such as hypoxia, ischemia, poor 

nutritional status, and inflammatory reactions in 

the traumatic area. The results indicated positive 

effects on neurological functions, evidenced by 

electrophysiological changes, MRI scans, and 

behavioral assessments. The motion capture 

system provided a precise analysis of gait 

characteristics, revealing improvements in 

locomotory abilities. The research provided 

valuable insights for treating traumatic brain 

injuries. A residual Fully Convolutional Neural 

Network (FCNN) incorporating an attention-

guided refinement unit was proposed to enhance 

the accuracy of amygdala and sub nuclei 

segmentation in brain images (58). The dual 

branch design and the top-down attention 

mechanism improved feature fusion, 

outperforming original models and a multi atlas 

approach. The model demonstrated robustness to 

real-world variability in imaging conditions, 

showcasing generalizability to a challenging TBI 

dataset from various sites. The findings 

emphasized the model's potential for precise and 

generalized brain image segmentation, 

contributing to advancements in medical image 

analysis. The challenge of predicting TBI outcomes 

using diffusion tensor imaging (DTI) was 

addressed in an illustrative study (59). They 

developed a classification pipeline which included 

a deep learning framework along with statistical 

and periodic permutation tests. A deep learning 

multi-modal network independently trained 

models for each DTI measure (FA, MD, MO, and 

AD). Results were iteratively improved through 

Tract-Based Spatial Statistics (TBSS) permutation 

tests, using the MICCAI Challenge dataset of 27 

subjects with three distinct categories: healthy 

individuals, group I patients, and group II patients. 

The proposed methodology showed potential for 

unbiased treatment of mild TBI and provided 

prognostic insights, assessing mTBI severity solely 

through DTI neuro-images. A segmentation model 

for cerebral microbleeds and non-hemorrhage 

iron deposits was developed using a distributed 

sample of 24 individuals from the MESA cohort 

(60). They modified the U-Net model with 

additional resolution layers for improved lesion 

detection. The multimodal approach, particularly 

utilizing QSM, showed promising results. In CMB 

detection, sensitivity and precision ranged from 

0.84 to 0.88 and 0.40 to 0.59, respectively. For non-

hemorrhage iron deposits, precision and 

sensitivity ranged from 0.62 to 0.75 and 0.75 to 

0.81. The research demonstrates the importance of 

deep learning in automating the detection of small 

vessel disease lesions, making it suitable for 

extensive research studies.

 

Table 3: Deep Neural Networks for TBI Detection with MR Images 

Authors Dataset Architecture Technique Results 

Roy et al., 

(46) 

MPRAGE, T2-w, 

and FLAIR 

images of 18 

patients. 

The design included three 

modified Inception modules, 

each comprising parallel 

layers of convolutions, max-

pooling, and average pooling. 

Each module featured four 

pathways: one max-pooling 

layer and three convolutional 

layers of dimensions 1x1. 

CNN This method showed 

greater segmentation 

accuracy on all the 18 

MRI images of TBI 

patients when 

compared with the 

other methods such as 

Random Forest and a 

CNN based Deepmedic 

Algorithm.  

Pomiecko et 

al., (47) 

240 subjects 

including 

The CNN architecture 

comprised one input layer, 

CNN The median Dice 

scores for control and 
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controls and 

TBI patients. 

two groups of 10 

convolutional layers, one 

classification layer and two 

fully connected layers. 

TBI subjects using CNN 

were 0.70 and 0.73 

respectively. This 

architecture was used 

by networks for 

predicting white 

matter masks. 

Chou et al., 

(48) 

Data was 

grouped into 

four sets to 

train the model 

and included 

179, 10, 198 

and 21 healthy 

subjects 

respectively 

-A minimum of two parallel 

neural networks called 

Encoders (had an input layer) 

-two fully connected ReLU 

layers 

-output layer. 

CNN  

Outperformed 

traditional CNN and 

other methods with an 

accuracy rate of almost 

100% on a holdout 

data set 

 

Roy et al., 

(49) 

The first 

dataset 

consisted of 19 

TBI patients. 

The second 

dataset 

included 16 

normal mice 

and the third 

cluster 

contained 10 

mice used in a 

repetitive TBI 

model. 

The Inception block contained 

parallel pathways to 33 and 53 

convolution filters and max 

pooling, preceded by 13 

convolutions. There was 

further concatenation of  33 

average pooling layers and 33 

convolutions in the 

architecture. 

CNN -Involved experiments 

on human as well as 

mouse MR images  

-showed greater 

accuracy in skull 

stripping  

-It showed better 

stripping masks for all 

the three sets of 

subjects. 

Gilbert et al., 

(50) 

The dataset 

included 23 TBI 

patients and 19 

healthy adults. 

A functional connectivity 

network was developed for 

each subject using 

independent component 

analysis (ICA) for brain 

parcellation. 

CNN  High reproducibility 

(r-value > 0.8) was 

observed in the 

cumulative frequency 

of dynamic network 

states across both 

samples. 

 

Feo et al., 

(51) 

-Adult male 

Sprague 

Dawley rats - 

testing subjects.  

-56 rats (out of 

which 43 were 

suffering from 

TBI) 

A bottleneck layer linked both 

the decoder as well as 

encoder branches. Each block 

comprised three iterations of 

batch normalization, ReLU 

activation and convolution. 

MU-Net-R 

Algorithm 

The model was able to 

achieve Dice scores 

above 0.90 using the 

MU-Net-R algorithm.  
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Koschmieder 

et al., (52) 

The dataset 

included brain 

MR images of 

45 patients 

with moderate 

to severe TBI. 

Patch-CNN being fully 

convolutional had candidates 

being used as core points for 

3D Patches of dimensions 

21x21x21. The Segmentation-

CNN had a similar 

architecture as Patch CNN but 

the dropout layer was 

removed. The U-Net model 

had two pooling and 

upsampling layers along with 

an intermediate layer. 

CNN The U-Net being the 

best model, achieved a 

90% detection rate 

with false positive 

counts of 17.1 in 

patients suffering from 

TBI and 3.4 for healthy 

patients. The Patch-

CNN model with a 

sensitivity rate of 90% 

produced 20.6 false 

positives in patients 

affected by TBI and 6.9 

false positives in 

healthy patients. The 

Segmentation CNN 

model achieved a 

sensitivity rate of 90% 

with false positive 

counts of 19.2 for TBI 

patients and 5.5 for 

healthy patients. 

Kamnitsas et 

al., (53) 

The dataset 

included 66 

patients with 

moderate to 

severe TBI. 

A 3D CNN model comprising 

11 layers and a dual pathway. 

3D CNN The proposed model 

was not only 

computationally 

efficient but also 

solved the 

segmentation 

problems. 

Yeboah et al., 

(54) 

203 TBI 

patients from 

18 to 79 years 

old. 

A 5 stage model, each 

equipped with a convolutional 

as well as an identity block. 

The convolutional block is 

made up of 3 stacked layers. 

ResNet-50 

CNN 

architecture 

The model 

demonstrated high 

sensitivity and 

specificity when tested 

on subjects with 

varying degrees of TBI 

severity. 

Cao et al., 

(55) 

110 subjects 

including 55 

subjects as TBI 

patients and 

the other half 

as group-

matched 

controls. 

The framework included 

three basic components: an 

encoder, a decoder and a 

classifier. The encoder and 

the decoder consisted of a 

hidden layer, an input layer 

and an output layer while the 

classifier only had an output 

layer and a single hidden 

layer. 

Deep 

Learning 

framework 

The model had an 

accuracy rate of 

82.86% and was able 

to distinguish people 

suffering from TBI and 

controls. 

Liu et al., 

(56) 

This study 

comprised 220 

A two stage framework for 

detecting cerebral 

Deep 

Learning 

The model had a 95.8% 

sensitivity rate, 70.9% 
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datasets having 

100 cases of 

hemodialysis, 

97 cases of TBI, 

13 cases of 

stroke, and 10 

healthy 

controls. 

microbleeds (CMB) including 

a FP reduction stage 

leveraging deep neural 

networks. 

framework precision rate, and 1.6 

FPs per case. 

Jiang et al., 

(57) 

The research 

study used 24 

canines as 

subjects and 

they were 

further 

distributed into 

four groups 

randomly. 

-fabricating a scaffold using 

silk fibroin and collagen 

-implant them with hUCMSCs 

at the brain trauma sites. 

Deep 

Learning 

framework 

Implementing this 

advanced therapy for 

traumatic brain injury 

involves repairing the 

structure and 

promoting functional 

recovery. 

Liu et al., 

(58) 

MRI images of 

14 individuals 

with an average 

age of 28.9 

years. 

FCNN architecture (uses 

encoder-decoder structure) 

Deep 

Learning 

framework 

The model achieved 

better performance 

compared to other 

segmentation methods 

as it was able to 

segment data within 

seconds. 

Cai et al., 

(59) 

27 subjects 

were included 

in the research 

which were 

then further 

categorized 

into Group I 

patients, Group 

II patients, and 

healthy 

patients.  

The architecture consisted of 

2 components: a dimension 

reduction layer and a 

consolidation layer for 

integrating outcomes from all 

metrics. 

Deep 

Learning 

framework 

This multi-modal deep 

learning approach was 

quite flexible to be able 

to predict TBI 

accurately. 

Rashid et al., 

(60) 

The model used 

24 individuals 

as a dataset to 

segment the 

lesions. 

Six resolution layers were 

used by the DEEPMIR model 

to detect small lesions like 

CMB. 

Quantitative 

susceptibility 

mapping 

The results proved that 

deep learning could 

even detect small 

lesions particularly 

CMBs and non-

hemorrhage iron 

deposits. 

Diagnosis Using Other Data 
In addition to EEG, CT and MRI, there are 

numerous other types of input data, used for the 

classification of TBI. These include wide field 

imaging which records neural activity in the form 

of calcium signals, using kinematics (trajectory, 

velocity, acceleration of movements etc.)  as input, 

involving existing datasets, using blood oxygen 
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level-dependent functional magnetic resonance 

imaging (BOLD-fMRI), acquiring images via bright-

field microscopy, using HD-sEMG recordings, 

utilizing audio recordings from existing datasets, 

analyzing speech patterns. The diversity in these 

input techniques brings in development of 

innovative approaches for the classification and 

comprehensive understanding of Traumatic Brain 

Injuries (TBI)'s impact, accurate diagnostics and 

treatment, as briefed in Table 4.  

MLP 
Data from a nationwide study in Taiwan on 

traumatic brain injuries (TBI) was utilized to 

determine the need for open-skull surgery (45). 

The dataset consisted of 12,640 cases, with 75% 

randomly chosen for training and 25% for 

validating. Initially a multi-layer perceptron (MLP) 

neural network featuring an eleven-node input 

layer, a hidden layer with 7 nodes, and a single-

node output layer using a sigmoid transfer 

function was employed. Another model was an 

RBF neural network with a single hidden layer. 

Both neural network models consistently 

outperformed a logistic regression model, with the 

MLP achieving an ROC area of 0.897 and the RBF 

network achieving 0.880. This suggests the 

effectiveness of MLP and RBF neural networks in 

predicting the need for open-skull surgery in TBI 

patients. Traumatic brain injuries and intracranial 

hemorrhages (ICH) were investigated with a deep 

learning-based classification model (61). The DL-

ICH model integrated Inception v4 for extracting 

features and a MLP for classification. Through 

tenfold cross-validation, the DL-ICH model 

exhibited high sensitivity (93.56%), specificity 

(95.56%), precision (95.26%), and accuracy 

(95.06%). Comparative analysis with existing 

models highlighted the DL-ICH model's superiority 

in terms of specificity and sensitivity, emphasizing 

its potential for accurate and timely ICH diagnosis. 

The prediction of neurocognitive rehabilitation 

outcomes in acquired brain injury (ABI) patients 

using data mining was focused on in a 

comprehensive study (62). Data from the 

PREVIRNEC platform was used to build three 

predictive models: MLP, decision tree, and general 

regression neural network. The dataset included 

10191 task executions related to memory 

cognitive function from 250 patients with mild to 

severe cognitive impairment. Decision tree 

demonstrated superior results with 90.38% 

accuracy rate, outperforming MLP (78.7%) and 

GRNN (75.96%). The study highlights the potential 

of decision tree algorithms in predicting cognitive 

rehabilitation outcomes for TBI patients. The 

validation of Artificial Neural Network models for 

predicting in-hospital mortality in TBI surgery, 

comparing their performance with logistic 

regression models were proposed in a study (63). 

Exclusion criteria filtered multiple TBI procedures, 

cerebrovascular diseases, incomplete data, and 

patients under 18. The ANN architecture had a 

standard feed-forward, back propagation 

structure with three layers. Results showed that 

ANN models outperformed logistic regression, 

demonstrating Hosmer-Lemeshow C statistic 

(43.90 vs. 53.18), superior accuracy (95.23% vs. 

82.44%) and AUC (89.61% vs. 77.39%). Sensitivity 

analysis highlighted key predictors for in-hospital 

mortality. The study concluded that ANN models 

exhibited superior performance in various metrics 

compared to logistic regression, emphasizing their 

potential for predicting TBI surgery outcomes. The 

application of artificial neural networks (ANNs) for 

predicting survival outcomes in TBI cases was 

explored in a study (64). The dataset, drawn from 

the National Trauma Data Bank (NTDB), included 

over 200,000 records from 712 hospitals, focusing 

on head trauma cases with positive head CT scans. 

The ANN architecture, featuring interconnected 

nodes in multiple layers, was designed to capture 

nonlinear interactions among input variables. The 

training process involved a unique "informative 

sampling" technique in a feed forward 3-layer 

neural network, with thirty ANNs trained 

simultaneously, and predictions averaged for 

enhanced accuracy. Logistic regression models 

were developed for comparison, and a testing set 

comprising 100 novel patients was created for 

evaluation. Results demonstrated that ANNs 

consistently outperformed both neurosurgeon 

clinicians and logistic regression models in terms 

of sensitivity, discrimination and accuracy. This 

highlighted the potential of ANNs as effective 

predictive modeling tools in neurosurgery, 

although the study acknowledged limitations 

related to dataset variability and the absence of 

key variables, emphasizing the need for more 

detailed databases for future refinement. While the 

above papers focused on in-hospital mortality, 

data mining techniques were integrated with serial 

GCS scores and clinical parameters to predict 6-
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month functional outcomes and mortality in 

patients with TBI (65). The retrospective analysis 

included data from 115 adult patients with 

moderate-to-severe TBI presenting at a trauma 

center. The input dataset included serial GCS 

measurements at the emergency department, 7th 

day, and 14th day, along with relevant laboratory 

data. Four predictive models (artificial neural 

network - ANN, naïve Bayes - NB, decision tree - 

DT, and logistic regression - LR) were utilized to 

forecast outcomes. The ANN model demonstrated 

the highest accuracy (96.13%) in predicting 

favorable functional outcomes, while the NB model 

excelled in mortality prediction (AUC of 90.14%). 

The study underscored the importance of serial 

GCS measurements, particularly on the 7th and 

14th days, in predicting outcomes. Key attributes 

influencing predictions included GCS scores at 

different time points and age. The ANN model, with 

its superior performance, was suggested as 

optimal for functional outcome prediction, while 

the NB model was deemed most effective for 

mortality prediction. The performance of ANN, 

multiple regression, and classification and 

regression trees in predicting outcomes for 1644 

patients in the TBI Model Systems database one 

year post-injury was compared in a study (66). 

Patients' Functional Independence Measure (FIM), 

Disability Rating Scale (DRS), and Community 

Integration Questionnaire (CIQ) were recorded. 

The ANN consisted of three main layers—input, 

hidden, and output—allowing for the collective 

impact of multiple independent variables on the 

output layer. The results suggested a potential bias 

in the sample toward follow-up, with 53.5% of 

patients meeting inclusion criteria for modeling 

procedures. Patients tended to experience higher 

rates of loss to follow-up when their admission FIM 

and DRS scores suggested less severe injuries, 

coupled with shorter stays in acute care. The need 

for an accurate traumatic brain injury (TBI) 

predictor through a deep learning approach, 

focusing on concussion classification utilizing 

reconstructed cases of injuries in the American 

National Football League (NFL), was addressed in 

a paper (67). The study employed the Worcester 

Head Injury Model to simulate reconstructed head 

impacts in the NFL, computing peak white matter 

fiber strains at each voxel. The deep learning 

architecture employed a network structure with 5 

fully connected layers and ReLU activation, 

demonstrating superior performance in 

concussion prediction compared to support vector 

machine (SVM) and random forest (RF) classifiers. 

Deep learning achieved the highest cross-

validation accuracy, sensitivity, AUC, and the 

lowest .632+ error, emphasizing its efficacy in TBI 

prediction. 

CNN 
A method to detect mild traumatic brain injury 

(mTBI) early by combining graph embedding 

features with 2D-CNN was suggested in a study 

(68). The Thy1-GCaMP6s transgenic mice utilized 

in this study consist of five males and females  The 

primary input technique involved recording 

cortical activity to capture neural activity in the 

form of calcium signals (widefield imaging). Node 

embedding features were extracted from brain 

functional networks using the Node2vec 

algorithm, resulting in the construction of 40 

images that were evaluated through a five-fold 

cross-validation method. The Convolutional 

Neural Network (CNN) consisting of 7 layers, 

started with an input layer. It included two 

convolutional layers: the first had 32 kernels of 

size 3x3 with ReLU activation, and the second 

employed 3x3 kernels with ReLU activation. 

Following this, a 2x2 max-pooling layer reduced 

the spatial dimensions. Subsequently, two fully 

connected layers with 32 and 16 nodes, 

respectively, were integrated, leading to an output 

layer with two nodes for classification using the 

softmax function. The learning rate for 

optimization was set at 0.001. 2D CNN achieved 

the highest accuracy of 95.8%. On the other hand, 

the graph node embedding method couldn't 

differentiate between normal and mTBI networks. 

In a similar work, early mTBI identification and its 

use in network measures through frequency-

specific analysis in functional networks were 

focused on in a study (69). Before and after 

inducing injury, activity in the cortex of 15 injury 

and control Thy1-GCaMP6s mice each was 

recorded using white field calcium imaging. The 

high frequency band network's measurements 

resulted in higher classification accuracy in graphs, 

contrasting the lower classification accuracy of the 

low frequency band network. The CNN classifier 

model recorded an average classification accuracy 

of 97.28% which proved to be better than the 2D 

CNN used in the previous paper. In contrast to 

detecting or predicting early mTBI, convolutional 
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neural networks were proposed to predict 14-day 

mortality in TBI patients, with CNN performance 

compared to conventional machine learning 

techniques in a study (70). Various optimization 

methods, including RMSProp, Adam, Adamax, and 

SGDM, were used in neural network simulations. 

Two CNN architectures, CNN1 and CNN2, were 

employed for mortality prediction. CNN1 had a 

parallel structure with three blocks, each 

containing Conv1D layers with different kernel 

sizes. CNN2 had a serial architecture with 1D 

convolutional layers, batch normalization, ReLU 

activation, dropout, and dense layers. The 

accuracies and area under the ROC, 0.859 and 

0.911, were achieved with a multilayer perceptron 

network and CNN, indicating CNN's superiority 

over other machine learning algorithms in this 

context. While detection of mTBI is important, 

differentiation of mTBI from healthy conditions is 

also crucial. A method to differentiate mild 

traumatic brain injury (mTBI) from healthy 

conditions in Thyl-GCaMP6s transgenic mice using 

wide field optical imaging of cortical activity was 

focused on in a paper (71). Image representation 

was executed using a Bag of Visual Words (BoVw) 

technique. Two primary models, Vision 

Transformer (ViT) and Convolutional Neural 

Network (CNN), were explored.Twenty-by-

twenty-by-one-pixel patches, twenty-five in 

number, were extracted from each of the 2047 

images produced during every recording session, 

which consisted of eight trials. The three 2D 

convolution layers were present in both the 

encoder and decoder networks. Features extracted 

and word histograms were then fed into a SVM for 

classification for a 10-fold cross-validation. The 

conclusion suggested that CNNs were 

outperformed by ViT and BoVW models 

considering classification accuracy as the main 

parameter showcasing their potential for mTBI 

identification. Other than wide-field optical 

imaging, measured kinematics is also widely used 

to detect TBI. The global public health issue of mild 

TBI in contact sports was addressed (72). They 

aimed to develop a computational model for 

estimating detailed brain strains using measured 

kinematics as input. The CNN architecture with 32 

filters of sizes 3x10, 1x10, and 1x5 demonstrated 

high accuracy (R² of 0.937, RMSE of 0.018). The 

model, tested on various impact datasets, 

consistently achieved high R² (0.884 - 0.915) and 

low RMSE (0.015 - 0.026). The CNN approach 

outperformed reduced-order models, showcasing 

its effectiveness in predicting regional brain 

strains for different impact scenarios, including 

high school football impacts. In their research 

proposal, the important role of efficient brain 

strain estimation for the repeated use of head 

injury models was emphasized, similar to the 

previous work (73). They utilized a dataset 

comprising head impact kinematics from two 

public databases, resulting in 2694 augmented 

impacts simulated using the anisotropic Worcester 

Head Injury Model (WHIM) V1.0. The creation of 

static images involved concatenating rotational 

velocity (vrot) and corresponding rotational 

acceleration (arot) profiles as inputs for each 

augmented impact in the CNN. Three training 

strategies were assessed: 1) "baseline" with 

random initial weights; 2) "transfer learning" with 

weight transfer from a previous CNN model 

trained on head impacts from contact sports; and 

3) "combined training," which involved merging 

previous training data from contact sports for 

training purposes. The combined training strategy 

produced the most optimal results, with the CNN 

achieving an R2 coefficient of 0.932 and an RMSE 

of 0.031 for peak MPS. Motor intent in post-

traumatic brain injury (TBI) patients was aimed to 

be decoded using high-density surface 

electromyography (HD-sEMG) recordings (74). 

The dataset included five male TBI patients (TBI_1 

to TBI_5), aged 27 to 34 years. A fully connected 

convolutional neural network (FC-CNN) 

architecture was employed, consisting of an input 

layer (L1), two convolutional layers (C2 and C3), 

one fully connected layer (F4), and an output layer 

(O5). The FC-CNN processed the HD-sEMG 

recordings to extract motor-related information. 

Subject TBI_3 achieved the highest accuracy at 

98.92%, surpassing other subjects. The study 

demonstrated the potential of FC-CNN in decoding 

motor intent from HD-sEMG recordings in post-

TBI patients. To understand injury mechanisms, 

predict outcomes, guide treatment strategies, and 

develop preventive measures, brain injury 

modeling for TBI is considered very crucial. A 

study was conducted with the purpose of 

enhancing subject specificity and efficiency in 

brain injury modeling (75). They extended an 

instantaneous convolutional neural network brain 

model. This was based on the anisotropic WHIM 
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V1.0. The researchers randomly scaled the WHIM 

and paired it with augmented head impacts 

generated from actual data to generate training 

samples. The individualized CNN achieved 86.2% 

while they cross-validated for model responses 

and 92.1% when they independently tested the 

model in a generic way. Using 11 subject-specific 

models without the need for individual 

neuroimages, CNN remained accurate. This 

research underlined the potential applications of 

injury mitigation and head protective gear design, 

particularly for youths. Brain injury modeling and 

bug severity models for TBI both aim to predict 

and understand the impact of traumatic brain 

injuries. The functional hyper connectivity in the 

first year of recovery after moderate to severe 

traumatic brain injury was studied (76). They used 

BOLD-MRI for this study. The dataset included 14 

individuals with TBI and 12 healthy controls, 

scanned at three time points over the first year, 

post-injury. The Glasgow Coma Scale assessed 

injury severity, and neuropsychological tests were 

conducted. Preprocessing included motion 

correction, normalization, and nuisance signal 

regression. The study identified hyper connected 

regions in the left frontal Default Mode Network 

and ventral parietal attention network at Time-2. 

Interestingly, increased connectivity at Time-3 

was associated with more efficient organization. 

The analysis revealed specific connectivity 

patterns at different recovery time points, 

contributing to the understanding of functional 

changes after TBI. Besides prediction and 

detection, there are many studies performed to 

further study the details of TBI. For example, a 

classification system was targeted for developing 

to determine activated microglia after traumatic 

brain injuries; that would also provide 

advancement of the cellular responses due to TBI 

(77). The cells that live in the nervous system's 

parenchyma are referred to as microglia. When a 

TBI occurs, the primary role of microglia is to 

eliminate cellular and molecular waste and restore 

normal brain environment. The study utilized 

images of Iba1-stained microglia from two brain 

regions, employing pre-trained Resnet18, 

Resnet50, and Resnet101 models for image 

classification (120x120 pixels). The CNN3CL 

architecture included three convolutional layers 

with ReLU activation and max-pooling. This was 

followed by fully connected layers and a softmax 

output. Training results showed Resnet18 

achieved the best accuracy (95.5-98.8%) and F1 

score (0.96-0.99) with 120 epochs. CNNs proved 

effective in differentiating microglia morphology 

in control and neuro inflamed brains, highlighting 

their value in neuroinflammation research. Among 

the works related to traumatic brain injury, there 

is particularly notable research which was done on 

developing a facial expression recognition (FER) 

model. It was made to enhance human-robot 

interaction designed especially for patients of TBI 

so that more enhanced communication and 

assistive technologies for the said population may 

be availed (78). This paper aimed to improve social 

interaction and assistance of trainers and 

physiotherapists in their work with TBI patients 

using robots. The input dataset consisted of 924 

videos of TBI patients engaged in cognitive, physio, 

and social rehabilitation activities. Approximately 

140,000 frames were captured at 30 fps for the 

dataset. Along with a combination of pre-

processing techniques, this paper also involved 

deep neural architecture consisting of CNN and 

LSTM. The CNN, fine-tuned with a pre-trained 

VGG16-CNN model, extracted facial features, and 

the LSTM exploited temporal relations based on 

the extracted features. A conclusion can be drawn 

from the experimental results indicating the 

successful development and validation of the TBI-

FER model on the CK+ database achieving a high 

accuracy of 91% in identifying various facial 

expressions in TBI patients. The results suggest 

that the Pepper-FER model was significantly 

outperformed by the TBI-FER model on both TBI 

and CK databases. This paper signifies the use of a 

customized training model for meaningful 

interaction with TBI patients. 

RNN and its Variants 
A prognostic model was created to predict long-

term outcomes in TBI patients, with the goal of 

enhancing clinical decision-making and patient 

management over time (79). The study collected 

data from TBI patients at 18 different academic 

level 1 trauma centers in the United States, using 

110 clinical variables as input for the model along 

with a deep RNN model. The researchers used a 

modified recurrent unit called GRU-D to predict 

the GOSE at six months after injury. They 

interpreted the predictions made by the RNN 

model using Shapley Additive Explanation (SHAP). 

The RNN model achieved an AUROC of 0.86 (95% 
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CI 0.83-0.89) for binary outcomes, while the 

comparison model's AUC was 0.69 (95% CI 0.67-

0.71). RNN model outperforms the existing 

IMPACT model in terms of performance metrics, 

including AUC, F1 score, and Kendall's correlation 

coefficient. Based on SHAP analysis, the important 

features contributing to outcome prediction 

include age, pupillary reactivity, motor score, vital 

signs, and lab measurements. This model was 

trained on both static and time series data. A Deep 

Neural Network system was proposed to enable 

noninvasive, speech-based assessment of long-

term impairments following Traumatic Brain 

Injury, aiming to improve diagnostic accuracy and 

monitoring of affected individuals (80). Due to 

limited TBI speech data, the study addressed the 

over fitting problem using three learning methods: 

transfer learning, multi-task learning, and meta-

learning. Three backbone models with different 

input dimensions and bottleneck-feature sizes 

were employed. The cascading network used a 

sliding window on raw audio to format input 

shapes, combining sequential features from the 

backbone models. A Gated Recurrent Unit (GRU) 

layer and Fully Connected (FC) layer with sigmoid 

activation for binary classification and linear 

activation for regression were used. The proposed 

methods significantly mitigated over fitting, 

improving 34% of classification accuracy of TBI 

and TBI regression error by 31%. A diagnostic 

methodology for sports-related mTBIs was 

proposed utilizing a Bi-LSTM-A structure that was 

particularized to focus on the features of MFCC for 

improving accuracy in detection accuracy (81). 

The study involved 46 rugby athletes, 7 with 

mTBIs. Parameters included a 44.1 kHz sample 

rate, default Librosa values (13 cepstral 

coefficients, 2048 FFT window length, 512 hop 

lengths). The Bi-LSTM-A model, optimized with 

particle swarm optimization, achieved 89.5% 

accuracy, with a sensitivity of 94.7% and 

specificity of 86.2%. The study suggests the model 

as a reliable mobile-based diagnostic tool for 

traumatic brain injuries. A DL framework was 

presented using data from smartphone sensors for 

TBI detection, introducing the TBI Bio score 

concept (82). The data of smartphone sensor 

(accelerometer, magnetometer, gyroscope, 

pedometer, pressure, altitude, accessibility) from 

subjects after head injuries was included in the 

dataset. The framework involved four stages: 1. 

Feature Creation with data collection, 

preprocessing, segmentation, and statistical 

feature extraction, 2. Attention scores of Feature 

fusion, 3. DL modeling for accurate TBI detection, 

and 4. Bioscore generation. Sliding windows of 

varying sizes (1, 2, or 3 days) were used for 

segmentation. Stacked LSTMs with Self-attention 

achieved 90.2% accuracy, with an 83.3% True 

Positive Rate. The Bioscore of TBI quantifies the 

probability of a person having TBI based on 

smartphone-sensed behavior, social interactions, 

mobility, and communication patterns. The study 

highlights the potential of passive smartphone 

phenotyping for TBI diagnosis. 

Hybrid CNN Models 
Early TBI detection was aimed to be improved 

using a multiple input architecture that integrated 

convolutional neural networks and LSTM (83). The 

study utilized a murine preclinical model dataset 

obtained from a home cage automated system, 

recording behaviors over five weeks. Variables 

such as distance traveled, body temperature, 

separation from other mice, and movement were 

recorded every 15 minutes for 72 hours weekly. 

The deep learning model was found to outperform 

other algorithms (SVM, random forest, feed 

forward neural network), addressing class 

imbalance and employing leave-one-out cross-

validation. The findings suggest the potential of the 

proposed model for enhanced TBI detection in 

murine models. While the above paper used CNN + 

LSTM only for early detection of mTBI, the early 

detection of mTBI used wide field optical imaging 

and deep learning in this paper (84). It used 

calcium imaging data from mice to capture spatial 

and temporal features for accurate classification. 

For each trial, 9 samples sized at 5x100x100x1 

were generated. Two main models were used: 

CNN-LSTM and 3D CNN. The optimizer was 

stochastic gradient descent. CNN-LSTM had three 

convolution layers followed by FC layers and 

performed best. 3D CNN included two 3D 

convolution layers and FC layers. The baseline CNN 

had three convolution layers. Results showed CNN-

LSTM and 3D CNN outperformed the baseline CNN 

and SVM models, highlighting the importance of 

temporal information. A framework for the early 

mild traumatic brain injury (mTBI) detection was 

developed using the wide field optical imaging and 

the calcium imaging data from the Thyl-GCaMP6s 

transgenic mice (85). The core of the framework 
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was a Convolutional Auto encoder (CAE) with 

three 2D convolution layers (kernel sizes 5×5, 5×5, 

3×3; filter sizes 8, 16, 32) and a fully connected 

layer with a latent vector of 32, 64, or 128 neurons. 

The CAE outperformed a conventional CNN in 

classification accuracy (96.47%). Training used 

Adam optimizer, Mean Squared Error loss, over 20 

epochs with a batch size of 64. Integrated with 

Support Vector Machines, the CAE demonstrated 

superior mTBI identification, showcasing its 

potential as a valuable tool for early diagnosis. 

Dysarthria detection was addressed using CNN 

LSTM architecture on 9184 audio recordings from 

the TORGO dataset (86). One twenty eight features 

were extracted using MFCC. The neural network, 

which included 25 layers - four CNN layers, max-

pooling layers, three fully connected layers, and an 

LSTM layer for temporal information extraction, 

was trained using the Adam optimizer of 0.0001 

learning rate. A state-of-the-art accuracy of 

99.59% was achieved by the model, surpassing 

machine learning models (CNN-SVM, Random 

Forest, XGBoost, and Decision Tree). This 

highlights the superiority of deep learning models 

in dysarthria detection. A dataset of 529 records 

with 71 variables from TBI patients was utilized 

(87). Preprocessing included handling missing 

values, and a neural network approach with 

Multilayer MLP and CNN architectures was 

employed. The MLP had a dropout layer separated 

into two dense layers (16 neurons each). The CNN 

featured a parallel architecture with three Conv1D 

layers of varying kernel sizes. Training parameters 

were optimized, considering imbalanced data, and 

models achieved a high accuracy of 0.845 and an 

AUROC curve of 0.911. The study suggests the 

effectiveness of neural networks in predicting 

outcomes for TBI patients. 

RBF 
The mechanical details of TBIs were investigated, 

especially in terms of how something described as 

the angle of incidence of a hit that causes the 

rotation of the brain impacts something known as 

the Cumulative Strain Damage Measure (CSDM) 

values (88). To do this, they used a hi-tech 

computer model of the human head called SIMon 

v4.0, which includes parts like the cerebrum, 

cerebellum, and brain stem. They did 250 

simulations where they applied rotational impacts 

of different strengths and directions. This involved 

looking at various angles to understand how the 

direction of the hit influences the damage measure. 

For the simulations, they used powerful software 

called LS-DYNA 971 Rev. 2, and to make sense of 

the data, they used a kind of computer model called 

a radial basis neural network (RBF). This helped 

them figure out the complex connections between 

how the head rotates and the resulting damage.

 

Table 4: Deep Neural Networks for TBI Detection with Other Types of Input Data 

Authors Dataset Architecture Technique Performance 

Lee et al., 

(17) 

TMS–EEG data 

collected from 

patients with 

DoC and 

resting-state 

EEG data 

-5 convolutional 

layers with 2D filters 

-Max-pooling layers  

-Softmax layer  

(ECI) using 

a CNN 

ECI was effective in discriminating 

altered states of consciousness. 

Li et al., 

(45) 

Data collection 

from a Taiwan 

based 

epidemiological 

study of TBI 

12,640 cases 

MLP:  typical feed-

forward 

backpropagation 

neural network 

3-layer topology 

11-node input, 7-node 

hidden, 1-node output 

layer.  

Sigmoid activation 

function 

 The neural network models 

outperforms in both the areas of  

ROC curl and calibration. 

MLP ROC area- 0.897 

RBF ROC area- 0.880  
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Mansour 

et al., 

(61) 

. 

   DL-ICH  

sensitivity (92.67-94.52%), 

specificity (94.81-96.34%), 

precision (94.42-96.10%), 

accuracy (94.10-96.03%).  

A comparative classification 

performance with WA-ANN, U-Net, 

SVM, WEM-CNN, CNN, 

andResNexT, underscored the DL-

ICH model's superiority in terms of 

sensitivity and specificity 

Marcano-

Cedeño 

et al., 

(62) 

The data used 

were obtained 

from the 

PREVIRNEC 

platform.  

10191 task 

executions 

related to the 

cognitive 

function of 

memory from 

250 patients 

with medium 

cognitive 

affectation. 

  Decision tree: 90.38% 

MLP: 78.7% 

GRNN: 75.96% 

The evaluation of the models 

included specificity, sensitivity, 

and accuracy analysis, along with a 

confusion matrix analysis. The 

validation process employed 

cross-validation with ten folds. 

Shi et al., 

(63) 

Taiwan 

National Health 

Insurance 

(BNHI). 

 

Feed-forward, back 

propagation NN 

Feed-inlayer- source 

nodes 

Invisible layer 

Yield layer- neurons 

ANN Accuracy  

ANN: 95.23%    LR: 82.44% 

AUC  

ANN: 89.61%    LR: 77.39% 

ANN models outperformed logistic 

regression. 

Rughani 

et al., 

(64) 

The dataset, 

sourced from 

the National 

Trauma Data 

Bank (NTDB) 

200,000 

records from 

712 hospitals.  

Feedforward 3-layer 

neural network 

Thirty ANNs were 

trained 

simultaneously 

ANN ANNs outperformed both 

neurosurgeon clinicians and 

logistic regression models. 

Accuracy, sensitivity, and 

discrimination, AUROC were 

superior for ANN  

David lu 

et al., 

(65)  

Data from 115 

adult patients 

with medium 

level TBI 

presenting in 

trauma centers. 

250 simulations 

where they 

  ANN 

Accuracy: 96.13% 

NB model  

AUC of 90.14% 
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applied 

rotational 

impacts of 

different 

strengths and 

directions. 

Segal et 

al., (66) 

NIDILRR, 

Patient count of 

1644 in the 

system of TBI 

model database 

after 1 year of 

injury. 

3 main layers: input, 

hidden and output 

layer 

ANN If FIM and DRS scores lead to the 

result of less severity of injury, 

patients lost to follow-up. 

Cai et al., 

(67) 

Modified head 

impacts count 

58, including 25 

shocks and 33 

non-trauma 

cases 

Five fully connected 

and ReLU activation 

layer  

Sigmoid function   

ADAM optimizer 

Stochastic gradient 

descent  

 DL achieved better accuracy for 

cross-validation, sensitivity, AUC, 

demonstrating its effectiveness in 

concussion prediction.  

 

Salsabi

lian et 

al., 

(68) 

40 constructed 

images taken from 

department of Cell 

Biology and 

Neuroscience at 

Rutgers University 

Node embedding 

features extracted 

using Node2vec 

algorithm  

 

Two layers each for full 

connection and 

convolution. 

Max-pooling and ReLU 

layers 

Output layer 

Attrition rate: 0.25 

Regularization for 

weight:5×10^(-4) 

Adaptive learning rate : 

0.001 

2D CNN 2D-CNN: 95.8% and graph 

node embedding method 

couldn't differentiate 

between normal and mTBI 

networks.  

Salsabi

lian et 

al., 

(69) 

Cortical activities PSD 

(wide field calcium 

imaging) was 

examined 

Frequency-specified 

functional networks.  

Frequency lower level less 

than 1Hz and higher level 

in range of 1 Hz to 8 Hz  

CNN Average classification 

accuracy of 97.28%. 

Frequency accuracy of 

classification of the higher 

band was greater. 

Guimar

ães et 

al., 

(70) 

529 records with 71 

variables of TBI 

patient from Hospital 

in Brazil 

-CNN1: 3 blocks Parallel 

architecture 

Every block with 2 

Convolution, Flattened 

layer, ReLU function, 

discontinuation layer of 

0.2 factor 

-Convolutional Neural 

Network 2 : 2 blocks of 

CNN Accuracy: 0.859 

Area under the ROC: 0.911 

CNN proved to be more 

accurate than all other ML 

algorithms  
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convolutional layer, serial 

architecture  

Batch normalization, ReLU 

function 

discontinuation layer, of 

0.2 factor  

Koocha

ki et al., 

(71) 

Wide field optical 

imaging of cortical 

activity 

Image representation 

using a BoVw 

technique 

Experiments. 

 

For ViT: Twelve layers 

each of hidden aspect and 

attention head 

Batch size: 8  

Learning rate: 2e−5 

Weight decay: 0.01,  

CNN model: three 

convolution and two fully 

connected layer; Softmax 

layer 

Vision 

Transform

er (ViT) 

and CNN 

ViT and BoVW models 

outperformed CNNs in 

classification accuracy 

showcasing their potential 

for mTBI identification.  

Wu et 

al., 

(72) 

Two impact datasets 

of size 110 and 53: 

Football in college, 

boxing, and martial 

arts Artificial impacts 

from the NFL 

32 filters of sizes 3x10, 

1x10, and 1x5, Coefficient 

of determination (R²) 

:0.937  

Root mean squared error 

(RMSE): 0.018 

CNN CNN-based approach proved 

to be efficient in estimating 

the brain strains from head 

impact kinematics 

Wu et 

al., 

(73) 

Two public databases 

used for collecting 

head impact 

kinematics 

Evaluation of three 

training strategies:  

● baseline  

● transfer learning 

● combined training 

(combining previous 

training data) 

CNN Favorable outcome rate of 

60.5% and 94.8% for 

element wise MPS of CNN 

 

Asogbo

n et al., 

(74) 

High-density surface 

electromyography 

(HD-sEMG) 

recordings of five 

male TBI patients: age 

range of 27 to 34 

years 

 

-Input layer (L1) 

-Two convolutional layers 

-One fully connected layer 

(F4) 

-Output layer (O5) 

-ReLU activation functions  

-Max pooling layer 

-Dropout regularization 

-Adam optimizer and 

cross-entropy loss 

function were utilized 

Fully 

connected 

CNN 

TBI_3 achieved the highest 

accuracy at 98.92%, 

outperforming TBI_5, TBI_4, 

TBI_1, and TBI_2 

Lin et 

al., 

(75) 

Linear scaling factors 

with 3 anatomical 

axes were used 

additionally to inputs 

of CNN 

Randomly scaling the 

WHIM training samples; 

pairing it with augmented 

head impacts 

CNN model 

on the 

anisotropic 

WHIM V1.0 

Success rate for responses 

of scaled model is 86.2% 

and testing of independent 

models is 92.1% -successful 

estimations for the generic 

WHIM 
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Roy et 

al., 

(76) 

Imaging data was 

collected for 14 

individuals with TBI 

and 12 controls, 

scanned at three-time 

frames. Glasgow Coma 

Scale (GCS) was used 

Motion improvement, 

normalization, and 

annoyance signal 

regression 

Connectivity analysis of 

strength revealed 

heightened global 

connectivity at Time-2 

BOLD-fMRI Lesion analysis identified 

trauma lesions in 13 out of 

14 cases 

 

 

Hsu et 

al., 

(77) 

Bright-field 

microscopy used for 

images of Iba1-

stained microglia 

from two brain 

regions 

Three convolutional, ReLU, 

full connectivity and Max 

pooling layers  

Softmax output 

CNN3CL -Validation accuracy: 67.7%  

-F1 score: 0.64  

for Resnet18 with 60 

epochs. -CNNs can 

accurately identify resting 

and activated microglia 

Ilyas et 

al., 

(78)  

924 videos of TBI 

patients engaged in 

cognizable, physio, 

and social 

improvement 

activities 

The CNN with a 

pretrained VGG16-

CNN, extracted facial 

features, and the 

LSTM exploited 

temporal relations 

based on the 

extracted features 

Detection of face, 

landmarks and tracking 

were performed using the 

SDM, followed by FQA.  

The CNN with a pre-trained 

VGG16-CNN model, 

extracted facial features, 

and the LSTM exploited 

temporal relations based 

on the extracted features 

CNN and 

LSTM 

The TBI-FER model 

outperforms Pepper-FER 

with 91% accuracy on 

traumatic brain injuries and  

extended Cohn-Kanade 

databases. 

  

Nayebi 

et al., 

(79) 

The study collected 

the data of patients 

from 18 academic 

levels across the 

United States 

110 clinical variables 

  RNN (AUC): 0.86 

IMPACT model: 0.69 

RNN model outperforms the 

existing IMPACT model in 

terms of performance 

metrics, including AUC, F1 

score, and Kendall's 

correlation coefficient.  

 

Apiwat 

et al., 

(80) 

 GRU layer, FC layer 

Sigmoid activation 

Linear activation 

DNN  

Wall et 

al., 

(81) 

MFCC features were 

extracted using 

Librosa, and the Bi-

LSTM-A model 

The parameters defined 

have (i) the sampling 

rates, (ii) the coefficients 

of cepstral, (iii) FFT length 

of window, and (iv) hop 

length. The sample rate for 

every recorded output was 

deep 

learning 

Bi-LSTM-A 

Accuracy: 89.5% 

Sensitivity: 94.7% 

Specificity: 86.2% 
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set at 44.1kHz, 

maintaining uniformity 

across all instances. 

Asani 

et al., 

(82)  

TBI Bioscore 

determined using 

phone sensor data 

(accelerometer, 

gyroscope, 

pedometer, 

accessibility, etc.) 

 

(1) Feature Creation sub-

stages: (a) Data gathering 

and Pretreating, (b) Data 

decomposition and, (c) 

statistical feature removal 

(2) Feature fusion (3) DL 

model to detect TBI, (4) 

Bioscore generation  

Deep 

Learning 

framework 

True positive rate Accuracy 

of 90.2% 

Teoh et 

al., 

(83) 

Dataset, obtained 

from a HCA system  

A deep learning model was 

utilized using variables like 

distance traveled, 

temperature of body, and 

movement for 15 minutes 

for 72 hours weekly 

LSTM 

integrated 

architectur

e 

The proposed deep learning 

model demonstrated 

superior performance, 

showcasing its potential in 

detecting brain trauma in 

mice 

Koocha

ki et al., 

(84) 

Imaging of calcium 

from mice to capture 

spatial features and 

temporal features. 

2 models used: 

CNN-LSTM: 3 

convolutional layers, FC 

layer 

3D CNN: 3D convolutional 

layers, FC layers 

Stochastic gradient 

descent optimizer  

 CNN-LSTM > 3D CNN > CNN 

(baseline) and SVM 

(baseline). 

 

Koocha

ki et al., 

(85) 

 2D convolutional layers 

FC layer 

ReLU activation layer 

Adam optimizer  

MSE as loss function 

 CAE surpassed the 

conventional CNN in 

classification accuracy 

(96.47%)  

When integrated with 

Support Vector Machines 

(SVM), it showed superior 

performance for mTBI 

identification.  

Vora et 

al., 

(86) 

 128 features from 

audio files 

4 layers of convolutional 

with max-pooling and 

ReLU activation. 

3 FC layers.  

Normalization and 

Dropout layers 

LSTM layer 

Sigmoid activation layer 
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Guimar

aes et 

al., 

(87) 

529 records with 71 

variables 

1-dimensional neural 

network 

MLP comprised two dense 

layers separated by a 

dropout layer, sigmoid 

function and 

normalization 

CNN with 

MLP 

0.845 accuracy score 

Area under the ROC curve of 

0.911. 

Results and Discussion 
Deep learning models have emerged to be 

revolutionary instruments in the discovery, 

classification, and analysis of traumatic brain 

injuries (TBI), significantly beating traditional and 

even machine learning methodologies. These have 

consistently shown capabilities to handle such 

diverse and complicated data types of EEG, CT, and 

MRI images, which hold the key to accurate 

diagnosis and explanation of TBI. CNN models have 

been used in studies related to EEG; they have been 

tested on accuracy levels necessary for identifying 

the severity of TBIs. The architectures built and 

optimized for the model used batch normalization, 

pooling layers, and ADAM optimizers, and 

therefore 99.76% accuracy was effectively 

realized. The key thing is that such models are 

capable of recognizing some very tiny but 

abnormal patterns within the brainwave that lead 

to TBI. Models such as LSTM and Fourier 

Transform derived models have successfully de-

monstrated impressivepredictive accuracy to diffe

rentiate between states of TBI, stroke, and normal 

brain. This reflects on the adaptability of deep 

learning algorithms in processing and filtering 

neurophysiological signals. In addition, EEG data 

has helped in developing a noninvasive method for 

early diagnosis and follow-up changes in the 

activity in the brain over time, thereby making it 

helpful in diagnosing TBI. In fact, deep-learning 

techniques have shown promising performance 

when dealing with tasks of brain lesion 

identification and segmentation, particularly 

subdural hematomas, intraparenchymal 

hemorrhages, and perilesional edema. Some 

architecture, such as VGG-SE-PCR, EfficientNet, 

and DeepMedic, have shown extremely good 

performance in several cases, yielding 

classification accuracies above 98%. They have 

achieved very good sensitivity and specificity 

values in distinguishing between different 

subtypes of hemorrhages, and many lesion 

volumes with clinical impact were detected well. 

After integrating multiclass segmentation with 

post-processing techniques, the performance was 

enhanced with regard to precision in lesion 

detection, making further use of deep learning as a 

must-have tool in TBI clinical management. 

Moreover, the enhancements like CNNs based on 

tracklets formation have made a lot of studies that 

have enabled dynamic real-time analytics, thereby 

improving the diagnostic workflow in 

emergency situations. Great advances in the field 

of MRI study also provided new proofs on the role 

of deep learning in the TBI research. Sophisticated 

architectures like Inception modules, 3D-CNNs, 

and variants of U-Net proved to be great assets in 

segmenting complex brain structures, in detection 

of lesion, and, lastly, in predicting how severe the 

TBI would be. The use of Inception modules during 

the processing of multi-contrast MRI multiplies its 

efficacy in overcoming problems such as 

exaggeration and false positives. Meanwhile, 3D-

CNNs have demonstrated a lot of promise in 

bringing lesion segmentation to the next level by 

being quite out of the ordinary, with increased 

sensitivity and accuracy, using volumetric 

information. Different models, such as Patch-CNN 

and DeepMedic, are already the forerunners in the 

detection of subtle abnormalities, among other 

things, like cerebral microbleeds, the most critical 

biomarkers in the TBI prognosis. The versatility of 

such models to engage many other imaging 

modalities like susceptibility-weighted imaging 

and quantitative susceptibility mapping 

demonstrates quite well the comprehensiveness of 

these tools in diagnosing problems. Collectively, 

these findings undergird the potential of deep 

learning to revolutionize TBI research and clinical 

practices. Large-scale, diverse data sets have 

driven not only advancements in diagnostic 

capability but also new insights into 

pathophysiology itself. The flexibility in 

incorporating new data sources and continually 
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evolving computational methods will keep deep 

learning front and center in both diagnosing and 

therapeutic innovations in TBI. 

Challenges 
A major problem with the development of DL 

models for TBI detection is the sharing of data, 

which is a significant barrier. Since medical 

imaging data is highly sensitive and is often 

distributed across a variety of organizations, 

access to this data is highly restricted. This 

explains why medical AIs are less accurate – the 

data needed to develop a proper deep learning 

model is simply not present. Moreover, the 

absence of sufficient data to work with opens the 

door for over fitting, which in turn decreases the 

usability and efficacy of a model for wider patient 

populations. The issue of sharing data is on its own 

a complex topic, as it touches on ethics and the law, 

which in many cases is international law and so can 

vary across borders. This is further exacerbated by 

the multitude of models an individual or an 

organization can create in silos, making it harder to 

validate the effectiveness of a model through data 

gathered via different sources. Of course, there are 

many ways around this issue; federated learning 

allows models to be trained on numerous 

decentralized sources without sending raw data 

into the clouds. Increasing dataset diversity for 

your deep learning model can be achieved either 

through developing more synthetic data or 

changing the data that you already possess. Lastly, 

the sensitive patient data can be de-identified and 

we can satisfy the privacy regulation while 

promoting open data initiatives. These need to be 

tackled to enhance the AI for the detection and 

management of TBI. 

Clinical Implications OF DL IN TBI 
DL has the potential to significantly improve the 

management of traumatic brain injuries by filling 

key gaps in their diagnosis, treatment, and 

outcome assessment. This article focuses on how 

DL methods, particularly CNNs and other advanced 

neural networks, are capable of efficiently 

processing and interpreting complex medical 

imaging modalities like EEG, CT, and MRI. This skill 

of machine learning can identify hidden patterns in 

the input data that otherwise might not have been 

noticed and will lead to a better and quicker 

diagnosis of TBI, thereby obtaining better results 

by making Milder time-sensitive medical 

procedures. The inclusion of DL models also opens 

doors to personalized treatment plans. DL can help 

physicians personalize treatments to patients by 

incorporating various data types of patient 

demographics, imaging results, and biomarkers. 

The medical personalization will further advance a 

patient while enhancing recovery rates while 

limiting therapies that are deemed unnecessary. In 

addition, DL has an application for management's 

purposes as is presented in this paper. Several 

studies are utilizing multi-modal information to 

develop models which can predict the likelihood of 

complications, level of recovery as well as the 

period of recovery and diseases. This further 

allows clinical decision making and resource 

allocation. TBI DL systems promise to fulfill that 

medical modality because of their ability to analyze 

complex, multi-modal datasets integratively and 

accurately. 

Generalizability of Dl Models for TBI 

Detection 
The paper points out the challenges and 

opportunities for the generalizability of DL models 

across different populations of TBI, severity levels, 

and imaging modalities. Generalizability is a 

significant concern in deploying DL models 

effectively in real-world clinical settings. This 

diversity within TBI populations, from young 

adults with mild injuries to the elderly with severe 

cases, challenges DL models uniquely. The authors 

note that models which are well trained on a 

certain dataset might fail to generalize and 

perform well in a population that differs 

demographically or clinically. Variability due to 

age, comorbidities, or even mechanisms of injury 

can lead to a significant difference in the accuracy 

and reliability of the models. Similarly, it discusses 

how TBI severity influences the complexity of 

patterns in medical imaging data. Mild cases are 

likely to be subtle, and the models used to detect 

such slight abnormalities need to have high 

sensitivity, whereas severe cases are more 

apparent but diverse in their manifestations. It is, 

therefore, critical that DL models can effectively 

cover this spectrum of severities to be clinically 

useful. Multi-modal imaging modalities for TBI 

detection are focused upon in this paper, namely 

EEG, CT, and MRI. Each of these modalities 

captures unique aspects of brain function and 

structure. A DL model has to be able to integrate or 

adapt variations in these differences to gain good 

performance. Some of the potential solutions are 
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multimodal datasets and techniques for 

generalization such as transfer learning, federated 

learning, etc. Another recommendation made in 

the paper is to train on larger, more diversified 

datasets with rigorous testing on independent 

datasets from diverse populations and modalities 

to improve model adaptability and cross-modal 

learning and data harmonization of pre-processing 

methods. Thus, the paper finds that 

generalizability is a difficult task that requires 

innovations in methodology and collaboration to 

make DL models both effective and reliable across 

different populations of TBI, severities, and 

imaging techniques. 

Future Directions in TBI Research with 

Deep Learning 
In the early stages of the deep learning approach to 

TBI, one should first attempt at developing 

multimodal models using varied data sources like 

EEG, CT, MRI, mel-frequency, and audio recordings 

that may further be improved upon using various 

DL architectures like CNNs, RNNs, LSTMs, and 

attention mechanisms for improved probabilities 

of performance. Advanced architectures including 

U-Net and Deep Medic should be developed to 

hone lesion segmentation and models that identify 

subtle traumatic micro bleeds from 3D imaging at 

very high spatial resolutions will be notable 

progress. Patient outcomes such as recovery 

trajectories or complications such as post-

traumatic epilepsy could become the focus for DL-

based predictive models using longitudinal 

datasets and relevant imaging biomarkers, such as 

brain strain patterns or cortical activity metrics. 

Portable diagnostic tools optimized for platforms 

like Raspberry Pi and adaptive models capable of 

continuous learning in dynamic environments are 

also important. There is another promising avenue 

that includes the personalization of therapeutic 

strategies - namely, assessments individualized 

and interventions tailored by TBI severity and 

neuroplasticity monitored during recovery via 

advanced imaging techniques. Automation should 

be the focal point of the research: automated 

extraction of features from raw EEG, CT, and MRI 

data and a focus on XAI with an emphasis on action 

ability from clinical insights. Increased 

representation of large diversified datasets with 

heterogeneous injury severities will further assist 

in generalizability, whereas training frameworks 

may be designed considering multiple sites across 

these imaging protocols along with the type of 

equipment employed. Finally, the ethical as well as 

critical regulatory challenges-mitigating biases as 

well as standards of health-will make it possible 

toward safe deployment. Following these routes, 

DL would revolutionize TBI research in research, 

bring up better clinical cares, and enter the door 

toward precision medicine. 
 

Conclusion 
Deep learning is changing the working 

environment in the field of traumatic brain injury 

(TBI) diagnosis and management, as far as 

increasing prediction and diagnosis efficiency is 

concerned. Due to its enabling of the automated 

detection of clinically relevant, highly nuanced 

features in medical images, deep learning is indeed 

revolutionizing the traditional diagnostic 

capabilities. The present paper puts emphasis on 

the possibility of these technologies making it 

feasible not only to detect patients with much 

greater accuracy but also treat them quickly and 

effectively with fewer risks for developing severe 

complications. New opportunities arise for future 

investigations in this regard due to the interplay 

between various types of biomarkers and input 

data. Moreover, these approaches TBI face the 

reshaping of the medical world with tools such as 

deep learning, which narrows down the 

enhancements needed for the extraction metrics 

and detection of medical images. Thus, deep 

learning is set to perform miracles in the realm of 

TBI management and improve the methods of 

providing precise, adaptable and timely 

healthcare. 
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