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Abstract 
Epilepsy disorder characterized by recurrent seizures, which is common in 60%-88% of patients with diffuse low-
grade gliomas, especially those in superficial cortical or insular regions. Understanding the connection between 
tumor morphology and epileptogenicity helps to refine diagnostic approaches and support therapeutic interventions. 
Identifying genetic clusters based on individual genetic profiles, supports to improve the epilepsy treatment methods. 
The study found the volume of white matter, grey matter, and cerebral spinal fluid in relation to epilepsy occurrence 
and severity. The preprocessing steps of skull stripping, feature scaling by k-means clustering, and radiomic feature 
selection by logistic regression models were analyzed. The CNN classifier was used to interpret the data to calculate 
the volumes of white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) volumes by marching cube 
algorithm. The performance metrics are calculated by machine learning (ML) classifiers like Support vector machine 
(95%), Logistic Regression (91%), AdaBoost (89%), Gaussian Naïve Base (87.5%), Gradient Boost (87%), and deep 
learning (DL) classifiers like CNN (96%) and DNN (79%). The study used classifiers to assess the accuracy and 
effectiveness of brain structures by prediction models. Although limited by dataset size, it offers valuable insights into 
epilepsy disorders with radiomic features. Future research should focus on multimodal analysis, and real-time data 
integration for improved diagnostic. This is the baseline study in the classification of brain tumor epilepsy (BTE) for 
upcoming research. Over all study aims to quantitatively assess the relationship between brain tumor morphology 
and epilepsy using deep learning models applied to MRI data. 

Keywords: Canny Edge Algorithm, Deep Learning Models, Machine Learning Models, Marching Cube Algorithm, 
Volumetric Analysis. 
 

Introduction 
Brain tumor epilepsy is a condition causing 

recurrent seizures that affects patients' quality of 

life, cognitive function, mobility, and overall well-

being. Identifying the cause and treatment is 

complex, and characterization is crucial for 

understanding the pathophysiology effects. The 

end-of-life phase epilepsy can be challenging to 

describe, and the link to focal cortical dysplasia is 

complex due to the morphological features and 

different modalities of brain tumor’s structure (1-

9). This paper presents a 3D reconstruction 

approach for BTE image visualization, utilizing 

preprocessing methods like skull stripping, 

feature scaling, radiomic cluster selection, and 

classification. The volumetric analysis by 

marching cubes algorithm, which creates a 3D 

surface mesh for segmented regions, aiding in 

structural abnormality detection, and localization 

of seizure onset zones, by classification models. 

The method also includes k-means clustering-

based segmentation and semi-automatic 

threshold selection techniques for accurate 

classification (10-13). The study evaluates the 

image detection using clustering techniques, 

tumor lesion region features for precise 

classification (14-16). Radiomics method of 

analyzing tumor phenotypes by extracting high-

dimensional quantitative features from image. 

This noninvasive approach allows for the analysis 

of tumor characteristics, comparable to molecular 

biological method of genomics. Several studies 

have explored the use of radiomics on MRI images 

to predict the grades of gliomas based on their 

feature selection methods (17-19). The 

volumetric analysis in epilepsy image involves 

skull stripping and the marching cube algorithm. 

Skull stripping isolates brain structures, while the 

marching cube algorithm reconstructs brain 

volume surfaces. This allows for detailed 3D 

analysis of structural abnormalities. The 

classification performance metrics was calculated 

by AI models.This gives the deeper understanding  
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and relationship between brain tumor and 

epilepsy.classification performance metrics was 

calculated by AI models. This gives the deeper 

understanding,and relationship between brain 

tumor and epilepsy.The study can significantly 

improve the patient care and clinical outcomes by 

assessing BTE unique characteristics and 

patterns. This paper provides the analysis of 

related literature, materials and methods, results, 

and a conclusion sections. Figure 1 explains the 

overview of BTE,  Figure 2A and 2B explains the 

visualization of BTE (Dicom & NifTi) 

images,Figure 3 explains the proposed 

methodology. 
 

 
Figure 1:  Brain Tumor Epilepsy and Their Causes 

 

 
Figure 2: (A) Structural Analysis of BTE Images (DICOM) 

 
                                                          Figure 2: (B) Structural Analysis of BTE Images(NifTi) 
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                         Figure 3: Proposed Methodology 

Relative Studies 
Recent advancements in deep learning and 

machine learning have significantly improved the 

identification of Brain Tumor Epilepsy (BTE), with 

this section reviewing machine learning and deep 

learning methods. Artificial intelligence (AI) in 

neuroimaging reduces errors and increases 

efficiency, and aid the physician could provide the 

better patient care. In practice, data artifacts 

might compromised by ML/DL models 

performance, AI algorithms could be used for 

better analysis. AI enhances neuro-oncologists' 

proper treatment plans. It aids MRI images for 

automated segmentation and classification of 

tumor related disease through biomarker method. 

ML uses algorithms to recognize patterns to make 

predictions. Supervised learning method using 

labelled input data to trains algorithms, while 

unsupervised learning using unlabelled data. 

Deep learning, analyze data in a logical form 

similar to brain function, and process raw input 

data directly. AI used to detect traumatic brain 

injury , long-term outcomes, and intracranial 

pressure (20-24). AI used to detect non-linear, 

non-stationary, low frequency of complex brain 

signals, and artifacts. It provides clinically 

relevant information accurately. Clinical analysis 

of brain tumor and epilepsy is crucial for saving 

lives. AI, gives time-consuming, and accurate 

diagnosis ,and increasing in clinical practise for 

automated detection, lesion prediction, disease 

progression by improving image quality. Brain-

computer interface method gives information 

about a patient's health condition, mitigate illness 

stages, by smart medical tools at homes (25, 26). 

Machine Learning Methods 
Machine learning methods like Logistic 

Regression, Gradient Boost, Ada Boost, Naïve 

Bayes, and SVM can classify tumor enlargement 

using labeled data. Ensemble learning techniques 

like Ada Boost, and Gradient Boost were used to 

improve the performance of the model (27-30). 

The feature scaling and clustering of RNA-seq is a 

model-based K-means clustering algorithm that 

addresses issues in unsupervised clustering of 

single cell RNA-seq samples. The method uses a 

finite mixture of regression to identify cluster-

discriminatory genes and account for potential 

confounding variables. The methodology used are 

normalization, candidate gene selection, by 

logistic regression algorithm (31, 32).  

Deep Learning Methods 
Neural networks, a deep learning technique 

mimicking human brain structure, provide better 

accuracy in BTE classification. The proposed brain 

tumor classification model based on CNN. The 

CNN model extracts both global and local features 

from two parallel stages, addressing over fitting 

issues. Detecting and classifying these tumors 

accurately is challenging due to their complex 

structure. The study used an improved fine-tuned 

model using CNN, on the BTE datasets (33-36). 

These methods highlight tubular structures, 

smooth noise, preserve edges, segment structures, 

and calculate volume. They are useful for 

visualizing and analyzing complex structures in 

images. The marching cube algorithm by CNN 

model used for analyzing volumetric data. 

However, it may require fine-tuning and 

optimization for large datasets and may not 

differentiate between types or assess epilepsy 

severity. AI models for these conditions may 

require large training data, which can be 

challenging and time-consuming are the 

limitation of this method. 
 

Methodology  
This section, provides the dataset used in the 

study and discuss the overall system architecture. 

Figure 3 provides a representation of the model 

architecture. The various AI algorithms, including 

XG Boost, AdaBoost, Gaussian, Naïve Bayesian, 

KNN, SVM, LR, CNN and DNN, used for the 

detection of BTE and volumetric analysis. 
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Data Acquisition 
The dataset used from the TGCA database, which 

is a publicly accessible database. The study aims 

to evaluate the brain tumor epilepsy (BTE) and its 

relationship with MRI sequences, and other 

biomarkers. The dataset consisted of 265 subjects, 

with 105 having BTE and 155 serving as normal 

controls. 

Preprocessing 
Pre-processing steps are necessary for preparing 

input data for proper classification results, by 

skull stripping, feature scaling, radiomic feature 

selection. To transform 3D MRI data into 2D slices 

enables such as gaussian smoothing, which helps 

in reducing noise and enhancing the clarity of the 

images. 

Skull Stripping Method 
Skull stripping and morphological structuring 

techniques were employed to eliminate non-brain 

tissue and unwanted sections such as the scalp, 

skull, and dura from MRI images. The was shown 

in the Figure 4. 
                                            

 
Figure 4:  Skull Stripping Process 

 

Machine Learning Approach 
Feature Scaling and Radiomic Feature 

Selection 

Feature scaling is a preprocess technique used in 

volumetric analysis to normalize and standardize 

input data, ensuring all features have similar 

scales or magnitudes. This helps in comparing 

measurements and considering all features 

equally by min-max [0-1] scaling and 

standardization. The k-means clustering 

technique divides images into clusters based on 

features like intensity, texture, and shape. Feature 

scaling is used to find intrinsic groups within the 

unlabeled dataset and draw inferences. The 

algorithm iterates between many steps until a 

predetermined stopping criteria is met, such as no 

data points changing the clusters, minimal 

distances, or a maximum number of iterations 

(37-39).The study uses cluster assignment 

methods to identify groups of brain tumor 

epilepsy with similar profiles across multiple 

omic data types. These methods include RNA Seq 

cluster, which assigns tumor samples based on 

RNA sequencing data, and methylation cluster, 

which classifies tumors causing epilepsy with 

similar methylation, miRNA, CN, and RPPA 

clusters, which helps to classify BTE and study the 

correlation between data types and patient 

survival. The results show the effectiveness of 

feature selection methods in removing low 

variance threshold features and providing 

insights into radiomic cluster patterns by logistic 

regression model (40-42). 

Machine Learning Classifier Models 

KNN is a lazy learner algorithm that assigns 

objects to classes with the most k nearest 

neighbors, without making assumptions about 

data distribution. Gaussian Naive Bayes is a 

probabilistic classifier that uses the Bayes 

theorem to estimate the likelihood of a test object 

belonging to each class. Support vector machines 

(SVM) is used for regression, classification, and 

outlier detection in n-dimensional spaces. 

AdaBoost and XG Boost are an ensemble learning 

algorithm that combines multiple weak learner 

models to create a strong model. ML models offer 

accurate classifications and predictions, but 

require larger sample sizes and are criticized for 

poor transparency. They divide unlabeled data 

into labelled groups, aiding human resource 

improvement and maximizing the benefits (43-

45). 

Deep Learning Approach 

Brain tumor epilepsy is serious disorder, 

requiring accurate diagnosis for treatment. A deep 

learning model with a large training cohort can 
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overcome accuracy limitations and develop a 

clinically relevant prediction model (46, 47). CNN 

and DNN are deep learning models used in image 

recognition, and particularly for MRI classification 

for brain tumor epilepsy. CNNs analyze and 

extract features from images, while DNNs provide 

a comprehensive understanding of data through 

multiple layers and complex connection. 

Segmentation by Threshold Method 

Canny edge detection is used in MRI processing to 

accurately identify and extract boundaries of 

anatomical structures or areas of interest from 

the image. This helps in segmentation and 

subsequent analysis of specific regions.Hessian 

matrix analysis is employed to detect and 

characterize the shape and orientation of 

structures within the MRI data. It provides 

information about local intensity variations and 

spatial relationships, aiding in feature extraction 

and classification.Eigen vector calculations are 

utilized to compute the principal directions of 

local image gradients. It gives the information of 

local geometry and anisotropy of image features. 

The canny edge algorithm, used in edge detection, 

is proposed to implement an improved Sobel 

operator, and iterative threshold filter method. 

The algorithm enhances noise resistance and 

preserves useful edge information by suppressing 

false edges (48-51). The canny edge detection 

method, used for noise reduction, intensity 

gradient calculation, non-maximum suppression, 

and double threshold. Noise reduction is done 

using gaussian smoothing to eliminate 

interference. The intensity gradient is calculated 

using filters and sobel operators. Non-maximum 

suppression thins out edges, ensuring local 

maximums are preserved. Double threshold 

classifies edges based on gradient magnitudes 

above [0.15] or below [0.1] a threshold.  While it 

can be used in conjunction with deep learning 

algorithms for various tasks, The noise reduction 

is applied through a 5x5 gaussian filter with a 

[2k+1] x [2k+1]kernel size, as stated in equation 

1. 

   𝐻𝑖𝑗 =
1

2𝜋𝜎2  𝑒𝑥𝑝 𝑒𝑥𝑝 (−
(𝑖−(𝑘+1)2)+(𝑗−(𝑘+1)2)

2𝜋𝜎2     )  ; 1 ≤ 𝑖, 𝑗 ≤ (2𝑘 + 1)                                                       ∗ [1] 

The gradient of the image can be calculated by convolving I(𝐼x, 𝐼y) with Sobel kernels Kx and Ky. These 

kernels use edge and pixel intensity to detect the edges of the image     

                                        Kx = [-1 0 1; -2 0 2; -1 0 1]:    Ky = [-1 -2 -1; 0 0 0; 1 2 1]                                           [2]   

Then, the magnitude G and the slope θ of the gradient are calculated in equation 3 and 4 

                                     Gradient Intensity |𝐺| = √𝐼𝑥
2 + 𝐼𝑦

2                                                                                       [3] 

                                               Edge direction   𝜃(𝑥, 𝑦) = 𝑎𝑟𝑐𝑡𝑎𝑛
𝐼𝑥

𝐼𝑦
                                                                          [4] 

 

Hessian Metric and Eigen Values of the Images 

The Hessian matrix is a 2D image symmetric 

matrix representing the real eigenvalues of an 

orthogonal coordinate system. It is used to 

describe second-order image intensity variations 

and determine the direction of the gradient curve. 

The process involves smoothing the image using a 

Gaussian function, convolution masks, and 

analyzing the gradient of a loss function. The 

eigenvalues of the Hessian matrix can be used to 

minimize loss in segmentation tasks. The image 

can be filtered using a filtering mask, resulting in 

the partial derivative of the 2D images.Then, 

numerical approximations are applied to obtain 

the partial derivatives; Ixx, Iyy, and Ixy.The 

gaussian function G (x, y) applied as a smoothing 

function, the equations for Gxx, Gyy and Gxy are 

constructed by convolution masks for Ixx, Iyy and 

Ixy. Therefore, in order to obtain Ix, the image can 

be filtered using the below functions. filtering 

mask can be generated and convolving the image 

with x, y = [-3 Σ(sigma):3 Σ], that mask gives the 

partial derivative of the 2D images as shown in 

figure 5 , and discused in below equations.  
 

The Gaussian function of the Image  𝐺(𝑥, 𝑦, 𝜎) =
1

2𝜋𝜎2 𝑒
−

(𝑥2+𝑦2)

2𝜎2     [5] 

Taking its partial derivative in x ,y gives Gx :  

𝜕𝐺(𝑥,𝑦,𝜎)

𝜕𝑥
= −

𝑥

2𝜋𝜎4 𝑒
−

(𝑥2+𝑦2)

2𝜎2 , 𝐺𝑦 ∶
𝜕𝐺(𝑥,𝑦,𝜎)

𝜕𝑦
= −

𝑥

2𝜋𝜎4 𝑒
−

(𝑥2+𝑦2)

2𝜎2                                                   [6] 

The equation of Gxx is given by                
𝜕2𝐺(𝑥,𝑦,𝜎)

𝜕2𝑥
= (−1 +

𝑥2

𝜎2)
𝑒

−
(𝑥2+𝑦2)

2𝜎2

2𝜋𝜎4   [7] 
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The equation of Gyy   is given by         
𝜕2𝐺(𝑥,𝑦,𝜎)

𝜕2𝑦
= (−1 +

𝑦2

𝜎2)
𝑒

−
(𝑥2+𝑦2)

2𝜎2

2𝜋𝜎4                   [8] 

The equation of Gxy is given by                 
𝜕2𝐺(𝑥,𝑦,𝜎)

𝜕𝑥𝑦
= (

𝑥𝑦

2𝜋𝜎6) 𝑒
−

(𝑥2+𝑦2)

2𝜎2                   [9] 
 

To apply a gaussian filter to the image using a 

desired kernel size and standard deviation. This 

helps to smooth the image and suppress noise.To 

calculate the partial derivatives of the smoothed 

image with respect to x and y, and sum up the 

elements of the hessian matrix to obtain the 

curvature values at each pixel location. . The 

eigenvalues represent the curvature along the 

principal directions, providing information about 

the type of features like edge or corner, at that 

location. To calculate the eigenvalues 

𝜆𝑚𝑎𝑥  𝑎𝑛𝑑 𝜆𝑚𝑖𝑛of the hessian matrix and 

determine the edge and corner points based on 

their values. If  𝜆𝑚𝑎𝑥  𝑎𝑛𝑑 𝜆𝑚𝑖𝑛  are positive or 

negative, it indicates an edge.  If  both 

𝜆𝑚𝑎𝑥  𝑎𝑛𝑑 𝜆𝑚𝑖𝑛 are positive and above a certain 

threshold, it indicates a corner.These values are 

determining edge and corner points may vary 

slightly depending on the specific implementation 

or algorithm being used. 
 

 

Hxx = (Ixx * 𝑘2) * Gxx,   Hxy = (Ixy * 𝑘2) * Gxy,   Hyy = (Iyy * 𝑘2) * Gyy and H = Hxx + Hyy                         [10] 
 

 
                                              Figure 5: Hessian Metric and Eigen Values of the Images 
 

Marching cube Algorithms 

CNN models are used for volumetric data analysis. 

The model can automatically learn features from 

the volumetric data and make accurate 

predictions. The marching cubes algorithm 

processes the volumetric data on a grid and 

determines the configuration of the surface within 

each grid cell, resulting in a mesh that represents 

the surface. The algorithm undergoes validation 

through various steps, including testing with 

diverse input datasets of extreme cases, verifying 

its accuracy, visualizing the final mesh, and 

comparing results. This process ensures the 

algorithm's ability to handle complex geometries 

and unusual scenarios. The mathematical 

technique used to create three-dimensional 

surfaces from data points. It partitions data into 

cubes, each containing data points or values. The 

algorithm traverses each cube, examining its 

values at its eight corners, to determine the 

object's surface. It can also be used to analyze 

volumetric data, calculate statistical measures, 

and generate a surface mesh from 3D voxel 

intensity data. This technique is commonly used 

for visualizing complex structures within 

volumetric data, which is useful in analysis of 

medical images. The mathematical expression of 

dividing a 3D volume into voxel grids involves 

discretizing the volume into discrete elements 

representing points in 3D space. For example, 

dividing a volume into 𝑁𝑥 , 𝑁𝑦 , and 𝑁𝑧voxels, the 

dimensions of each voxel are calculated. 

 

   ∆𝑥=
𝑁𝑥

𝑋𝑚𝑎𝑥
      , ∆𝑦=

𝑁𝑦

𝑌𝑚𝑎𝑥
     , ∆𝑧=

𝑁𝑧

𝑍𝑚𝑎𝑥
   are explained as follows                                                                        [11] 

𝑋𝑖 = 𝑖. 

  𝑤ℎ𝑒𝑟𝑒 𝑖 = 0,1, … … ., 

𝑌𝑗 = 𝑗. 

  𝑤ℎ𝑒𝑟𝑒 𝑗 = 0,1, … … ., 
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𝑍𝑘 = 𝑘. 

  𝑤ℎ𝑒𝑟𝑒 𝑘 = 0,1, … … ., 

𝑓(, 𝑓(, 𝑦𝑗 , ), 𝑦𝑗+1, )𝑓(, 𝑦𝑗+1, )                                      [12] 
 

 

Let's consider a cube defined by its corner points 

at indices (i,j,k) where i,j,k are integers 

representing the indices along the x, y, and z axes, 

respectively. The intensity values at the corners of 

this cube can be denoted as f(x,y,z) where x=𝑥𝑖 , y= 

𝑦𝑗and k= 𝑧𝑘 .Here, 𝑓(, 𝑦𝑗 , )represents the intensity 

value at the corner with indices (i,j,k) and similar 

notations apply to the other corners. The indices 

i+1, j+1, k+1 represent the next indices along the 

respective axes. It uses a cube with 8 vertices and 

12 edges as a volume element. A case lookup table 

stores possible triangulations, with 256 possible 

subjects of BTE, and abnormality clearly deducted 

in to 105 cases. An index is created for each case 

based on vertex intensity. Linear interpolation 

calculates triangle vertices positions on cell edges, 

determining surface intersections and 

interpolating surface intersections along edges . 

The value is 1 if intensity ≥ iso value, and the 

value is 0 if intensity< iso value. T is a threshold 

value that determines if a corner is detected or 

not, based on the intensity of the corner at a 

specific location. Its value depends on the desired 

sensitivity.  

 

Intersection=Any corner intensity   ≥   𝑇 or      Any corner intensity<   T 

𝑓(𝑥𝑖 , 𝑦𝑗 , 𝑧𝑘) ≥ 𝑇 𝑜𝑟 𝑓(𝑥𝑖+1, 𝑦𝑗 , 𝑧𝑘) ≥ 𝑇 𝑜𝑟 … … … … … … … 𝑜𝑟 𝑓(𝑥𝑖+1, 𝑦𝑗+1, 𝑧𝑘+1) < 𝑇                                                          

𝑥𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑥 )                                                   [13] 

   𝑓(𝑥𝑖,𝑦𝑖,𝑧𝑖) ≥ 𝑇 𝑓𝑜𝑟 𝑖 = 1,2, … . .8  [14] 

  𝑝𝑖=𝑝𝑎 +
(𝑇−𝑓𝑎 )

(𝑓𝑏−𝑓𝑎 )
 𝑝𝑎 )                           [15] 

    The volume of a 𝑉𝑣𝑜𝑥𝑒𝑙 = (𝑣𝑜𝑥𝑒𝑙_𝑠𝑖𝑧𝑒_𝑥 ) ∗ (𝑣𝑜𝑥𝑒𝑙_𝑠𝑖𝑧𝑒_𝑦 ) ∗ (𝑣𝑜𝑥𝑒𝑙_𝑠𝑖𝑧𝑒_𝑧 )              [16] 
 

The cube's corners' intensity values must meet a 

threshold to intersect the iso-surface. If true for at 

least one corner, the cube intersects, and its 

intersection points are calculated. Let T be the 

threshold intensity level and 𝑖1  and 𝑖2  be two 

corners of the cube with intensities 𝑓 𝑎𝑛𝑑 𝑓 where 

𝑖1 < . These two corners straddle the iso-surface. 

The co-ordinates of these corners are 𝑥 𝑎𝑛𝑑 𝑥 .To 

calculate the X intersection, point  along the x-axis 

where the iso-surface crosses the edge between 𝑖1 

and 𝑖2 . The equation interpolates corners 𝑖1and 

𝑖2based on threshold T and intensity values. The 

algorithm determines if the cube intersects the 

iso-surface, evaluating if the corners cross the 

threshold. The representation of a single voxel 

cube defined by its eight corners (vertices) with 

intensities f(x,y,z) where x,y and z are the spatial 

coordinates. If all vertices are above the threshold 

or all are below, the cube doesn't intersect the iso-

surface. If there's a mix of values above and below 

the threshold, the cube intersects. If a cube 

intersects, the algorithm proceeds to calculate 

intersection points and form triangles. 

Intersection points can be calculated by linearly 

interpolating between vertices based on the 

threshold. The 𝑝𝑖is the intersection point between 

vertices 𝑝𝑎  and 𝑝𝑏 , and 𝑓𝑎and 𝑓𝑏are their 

corresponding intensity values. The 3D 

reconstruction of MRI images has limitations due 

to factors like artifacts, speckle noise, and 

suboptimal image quality can affect accuracy and 

reliability. To analyze the soft tissue data, to 

reconstruct the 3D models, triangulate the cube 

configuration by the marching cube algorithm, 

which is robust under data and threshold values 

(52-56). The figure 6 shows the random samples 

of marching cubes. The process of segmenting and 

classifying structures can be subjective, and can 

limit real-time applicability. Despite these 

challenges, 3D reconstruction holds potential 

benefit for medical education, and to improve 

methodology and algorithms. 
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            Figure 6: Structure of Marching Cubes 
 

Results and Discussion 
This study uses only the MRI images for skull 

stripping, feature scaling, feature selection and 

then apply the marching cubes algorithm used 

for surface extraction from volumetric data for 

visualization purposes and the voxel intensity 

data to generate a surface mesh. The 

classification scores are calculated by different 

classifier models. 

Environmental Setup 
The recommended approach is executed on a 

Windows 10 center i7-4710MQ computer chip 

running at 2.5 GHz (8 central processors), with 8 

GB of Slam and 1 GB of committed illustrations 

handling unit memory. All experiments are 

performed on a Personal computer with Intel 

Core i5 GH z processor and 8.00 GB RAM, nvidia. 

The proposed method is implemented in Python 

3.6.5 with libraries like pydicom, Dicom2nifti, 

simple ITK, nibabel, nilearn, 

scipy.ndimage,numpy and matplotlib.pyplot 

.Import nibabel, skimage.measure, marching 

cubes, numpy, mayavi, mlab; install Xvfb, create 

visualization, loop through saved OBJ files, loop 

through meshes, create visualization of 

marching cube visualization of images, 

sklearn.metrics import accuracy score, sklearn 

import model_selection,sklearn.ensemble,SVC , 

logistic regression, tensorflow.keras.models 

import Sequential , Voting Classifier, 

imblearn.over_sampling.  

Analysis of Feature Scaling 
This normalization method ensures that each 

cluster is evaluated on the same scale (0-1). 

Feature scaling can also reduce the 

computational complexity of the analysis. Table 

1 presents summary statistics for each cluster in 

the dataset, including cluster, count, mean, 

standard deviation, minimum, 25th percentile, 

median, 75th percentile, and maximum. It 

provides cluster number, count, mean, standard 

deviation, min, max, and 25th, 50th, and 75th 

percentile values. Table 2 converts the features 

in to numerical cluster equivalent. Table 3 

provides the feature scaling of the dataset 

clusters involves normalizing the data so that all 

of the clusters have the same range of values 

from 0 to1. 
 

Table 1:  Statistical Summary of Cluster Numerical Variables 

 

Variables 

RNA 

Seq 

Cluster 

Methy 

Lation 

Cluster 

Mirna 

Cluster 

CN 

Cluster 

RPPA 

Cluster 

Oncosign 

Cluster 

COC 

Cluster 
Histological_Type 

Neoplasm_ 

Histologic_ 

Grade 

Laterality 
Tumor_ 

Location 
Gender 

Age_At_Initial_ 

Pathologic 
Race Ethnicity Diagnosis 

Count 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 

Mean 2.04545 3.645 1.9 1.690 2.1090 1.809091 1.7636 2.109091 1.518182 0.990909 1.99090 3.48 45.418182 2.85454 1.8272 0.24545 

std 1.41022 1.215 0.7893 0.885 1.2946 0.760196 0.8559 0.870995 0.519912 0.095346 1.00909 1.88 14.412267 0.48531 0.5394 0.43232 

min 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 

25% 1 3 1 1 1 1 1 1 1 1 1 2 33.25 3 2 0 

50% 2 4 2 1 2 2 1 2 2 1 2 2 46.5 3 2 0 

75% 3 5 2 3 3 2 3 3 2 1 3 6 57.75 3 2 0 

max 4 5 4 3 4 3 3 3 2 1 3 6 75 3 2 1 
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Table 2: Features are Converted in to Numerical Cluster Equivalent 

 

 

 

Table 3: Feature Scaling and Normalization                            
 

 

 

 
                                                     Figure 7: Statistical Value of Clusters  

 
 

 
                                             Figure 8: Numerical Equivalent of Clusters 
 

Number 

Of 

Clusters 

RNA 

Seq 

Cluster 

Methy 

Lation 

Cluster 

Mirna 

Cluster 

CN 

Cluster 

RPPA 

Cluster 

Oncosign 

Cluster 

COC 

Cluster 
Histological_Type 

Neoplasm_ 

Histologic_ 

Grade 

Laterality 
Tumor_ 

Location 
Gender 

Age_At_Initial_ 

Pathologic 
Race Ethnicity Diagnosis 

1 2 4 2 0 3 2 1 2 1 3 2 F 3 2 1 2 

2 1 5 1 1 2 1 1 2 1 3 2 M 2 0 1 1 

3 1 5 1 2 2 1 1 2 1 1 2 F 3 0 0 1 

4 0 5 1 2 1 1 1 1 1 3 6 F 3 0 0 0 

5 4 5 1 2 3 1 1 2 1 1 6 F 3 0 0 4 

Feature 

Series 

Rna 

Seq 

Cluster 

Methy 

Lation 

Cluster 

Mirna 

Cluster 

Cn 

Cluster 

Rppa 

Cluster 

Oncosign 

Cluster 

Coc 

Cluster 
Histological_Type 

Neoplasm_ 

Histologic_ 

Grade 

Laterality 
Tumor_ 

Location 
Gender 

Age_At_Initial_ 

Pathologic 
Race Ethnicity Death01 

1 0.5 0.8 0.3333 0.666 0 1 0.5 0.33333 1 1 1 0.33 0 1 1 1 

2 0.25 1 0.3333 0.333 0.25 0.66666 0 0.33333 1 1 1 0.33 1 0.6666 0 1 

3 0.25 1 0.3333 0.333 0.5 0.66666 0 0.33333 1 1 0.3333 0.33 0 1 0 0 

4 0 1 0.3333 0.333 0.5 0.33333 0 0.33333 0.5 1 1 1 0 1 0 0 

5 1 1 0.3333 0.333 0.5 1 0 0.33333 1 1 0.3333 1 0 1 0 0 
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                                                             Figure 9:  Feature Scaling and Normalization 

 
 

 
                                                      Figure 10:  K-means Clustering Model  
 

Figure 7 shows feature scale performance based 

on statistical value and numerical clusters with k 

means clusters. This value is determined by 

calculating the distance between the points within 

a cluster and the centroid of the cluster. The 

closer the points are to the centroid, the higher 

the value of the cluster. Figure 8 shows a 

numerical value can be used to describe the 

clusters in terms of size, shape, and density. 

Figure 9 is a graphical representation of the 

feature scaling process, which is used to 

normalize data by transforming it so that all the 

features have a similar range of values. This 

allows the data to be more easily clustered. Figure 

10 is a graphical representation of a K-means 

model with different clusters. The graphical 

representation shows how the data is distributed 

among the clusters (k=1,40, k=2,55, k=3,41 and 

k=4,61-labelled) in which k=4 gives better 

accuracy of 75% (with k means. inertia_ 141.611) 

better the model to fit. 

Analysis of Radiomic Feature Selection 
The feature selection methods used to remove 

low variance threshold features and identifying 

informative features by regression model. The use 

of cluster analysis also provided insights into 

radiomic cluster patterns. Table 4 explains the use 

of radiomic cluster patterns in identifying Brain 

tumor epilepsy groups based on consensus 

clustering of multiple omics data types. It also 

discusses the use of RNASeqCluster, 

MethylationCluster, RPPACluster, and 

cosignCluster. It also discusses the classification 

of tumors into different types, 

neoplasm_histologic_grade, laterality, and 

death01 columns, which can be used to study the 

correlation between data types and patient 

survival. These features help in identifying tumors 

with similar profiles of epilepsy as shown in the 

Table 4 and Figure 11. 
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Figure 11:  Radiomic Clusters or Features in the BTE Image 

 
 

Table 4: Radiomic Clusters (features) Selection by Logistic Regression Model 

Correlation of 

Clusters 

RNA 

Seq 

Cluste

r 

Methy 

Lation 

Cluster 

Mirna 

Cluste

r 

CN 

Cluster 

RPPA 

Clust

er 

Oncosign 

Cluster 

COC 

Cluster 

Histological_

Type 

Neoplasm

_ 

Histologic

_ 

Grade 

Laterality 
Tumor_ 

Location 
Gender 

Age_At_Init

ial_ 

Pathologic 

Rac

e 
Ethnicity 

Death

01 

RNASeqCluster 
1.00

00 

-

0.45

1 

-

0.2491

58 

0.3

7 

0.36

54 

-

0.3550

5 

0.3 
0.31920

4 

-

0.0406

13 

1.974972e

-02 

-

0.109

65 

-

0.0

9 

0.08541

3 

-

0.027

1 

1.6e-

01 

-

0.12 

MethylationCluste

r 

-

0.45

1 

1.00

0 

0.1444

51 
-0.4 

-

0.27

1 

0.3756

92 
-0.461 

-

0.47110 

0.2289

20 

-

3.215368e

-02 

0.101

96 

0.0

6 

-

0.33087

4 

-

0.119

2 

4.8e-

02 

-

0.03 

miRNACluster 

-

0.24

9 

0.14

4 

1.0000

00 
-0.6 

-

0.14

9 

0.1462

18 
-0.021 

-

0.17274 

0.0897

71 

-

1.044166e

-01 

0.060

47 

0.0

3 

0.08733

9 

-

0.000

7 

-2e-

02 
0.04 

CNCluster 
0.37

01 

-

0.46

1 

-

0.0687

48 

1.0

0 

0.20

16 

-

0.3772

7 

0.9374 
0.38994

7 

0.0156

96 

3.588479e

-02 

-

0.244

66 

0.0

2 

0.38379

0 

0.050

91 

1.4e-

01 

-

0.04 

RPPACluster 
0.36

54 

-

0.27

1 

-

0.1496

90 

0.2

0 

1.00

00 

-

0.0280

1 

0.1433 
0.24740

7 

0.1260

08 

1.682782e

-01 

-

0.001

79 

-

0.1

5 

0.17534

2 

0.230

63 

6.1e-

02 

-

0.06 

OncosignCluster 

-

0.35

5 

0.37

5 

0.1462

18 

-

0.3

7 

-

0.02

8 

1.0000

00 
-0.408 

-

0.45939 

0.2918

61 

-

1.153338e

-02 

0.219

22 

0.0

3 

0.11312

5 

-

0.003

3 

5.3e-

02 
0.22 

COCCluster 
0.36

85 

-

0.46

1 

-

0.0217

29 

0.9

3 

0.14

33 

-

0.4089

3 

1.0000 
0.39642

0 

0.0280

89 

2.420822e

-02 

-

0.285

02 

0.0

2 

0.37982

3 

0.066

54 

9.9e-

02 

-

0.02 

histological_type 
0.31

92 

-

0.47

1 

-

0.1727

49 

0.3

8 

0.24

74 

-

0.4593

9 

0.3964 
1.00000

0 

-

0.3136

60 

8.605558e

-02 

-

0.170

41 

0.0

4 

0.09488

5 

0.052

57 

3.4e-

02 
0.03 

neoplasm_histolog

ic 

_grade 

-

0.04

0 

0.22

8 

0.0897

71 

0.0

1 

0.12

60 

0.2918

61 
0.0280 

-

0.31366 

1.0000

00 

4.580013e

-02 

-

0.017

81 

0.0

6 

0.14134

7 

0.081

76 

6.8e-

02 
0.23 

laterality 
0.01

97 

-

0.03

2 

-

0.1044

17 

0.0

3 

0.16

82 

-

0.0115

3 

0.0242 
0.08605

6 

0.0458

00 

1.000000e

+00 

-

0.067

44 

0.0

2 

0.00213

4 

0.005

97 

7.7e-

17 
0.05 

tumor_location 

-

0.10

9 

0.10

1 

0.0604

70 
-0.2 

-

0.00

1 

0.2192

28 
-0.285 

-

0.17041 

-

0.0178

19 

-

6.744575e

-02 

1.000

00 

0.1

3 

-

0.10720

3 

-

0.053

4 

4.0e-

02 
0.01 

gender 

-

0.09

5 

0.06

9 

0.0313

6 

0.0

2 

-

0.15

7 

0.0343

17 
0.0248 

0.04751

6 

0.0661

49 

2.804565e

-02 

0.136

23 

1.0

0 

0.08788

0 

0.052

09 

-6.e-

02 

-

0.04 

age_at_initial_path

ologic 

0.08

54 

-

0.33

0.0873

3 

0.3

8 

0.17

53 

0.1131

25 
0.3798 

0.09488

5 

0.1413

47 

2.134116e

-03 

-

0.107

0.0

8 

1.00000

0 

0.022

63 

5.2e-

02 
0.24 
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Analysis of Marching Cube Algorithm 
The marching cube algorithm takes input in the 

form of nifty images and produces a volumetric 

mesh with five components: scalp, skull, csf, gm, 

and wm. The process involves loading, realigning, 

and reslicing the input image to create the surface 

mesh. The surface mesh visualization generates 

three components: scalp, skull, and brain. The 

segmentation step refines the images for each 

component (scalp, skull, csf, gm, wm) to create a 

mesh (triangulated surface mesh and  hexahedral 

volume mesh) using the marching cube algorithm. 

The MC algorithm converts the surface and 

volume rendering of nifty images into 3D data. It 

works with cubes that have 8 vertices each, 

resulting in 256 ways a surface can intersect. The 

algorithm reduces the 256 cases to 25 

patterns.The classifiers interact with the 

volumetric data obtained from the marching 

cubes algorithm by examining the properties of 

each voxel in the volume. It creates a grid of 

voxels, which represent different regions in space. 

Each voxel contains information such as its 

position, density, color, or any other relevant 

property of the object being represented. The  

 

 

CNN classifiers then analyze the voxel data to 

determine various characteristics or features that 

are useful for classification purposes. For 

example, they might look for patterns or 

structures. The algorithm was applied to the 

binary masks of GM, WM, and CSF to extract 

surface meshes. To determine the threshold level 

for each tissue type, which is corresponds to the 

desired tissue type. This helps to extract the 

surface mesh of each tissue type. Prior to applying 

the marching cubes algorithm, pre-processing 

steps on the images were in a suitable format for 

surface reconstruction and visualization was 

important. After preprocessing, each voxel in the 

image was assigned to its corresponding radiomic 

cluster label. This allowed us to label each voxel 

based on its cluster membership, providing 

valuable information about the genetic 

characteristics of the tissue. The resulting surface 

mesh sequence of images is shown in Figure 12, 

Figure 13, and Figure 14. These visualizations 

help to understand the genetic clustering patterns 

within the brain tissue and provide a visual 

representation of the genetic characteristics of the 

brain structure. 
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Figure 12: 3D-Mesh Structure of sTCGA141456 Sequence of BTE Images 

 

 

 
                                      Figure 13: 3D-Mesh Structure of sTCGA141456 Sequence of BTE Images 
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                                         Figure 14: Abnormal Structure Varies from Actual Anatomical Structure 

 
 

  Table 5: Volumetric Analysis of Brain Tumor Epilepsy  

Brain Tumor Epilepsy- (DICOM Images are 

Converted to Nifty format) 

White Matter 

Volume mm³ 

Gray Matter 

Volume mm³ 

Cerebro Spinal  

Fluid Volume mm³ 

sTCGA141456-0004-00001-000001-01.nii 759690.32  7905787.76  3045435.02  

sTCGA141456-0006-00001-000031-01.nii 637531.25  5418832.64  6342262.36  

sTCGA141456-0007-00001-000001-01.nii 859646.80  7466640.09  3484027.51  

sTCGA141456-0003-00001-000001-01.nii 561239.84  8177898.56  447756.94  

sTCGA141456-0005-00001-000001-01.nii 0860188.01 7581203.09  3369464.51  

sTCGA141456-0006-00001-000001-01.nii 5387878.42 5474704.54  6286390.46  

sTCGA141456-0201-00002-000001-01.nii 793043.08 8593455.79  31545.64  

sTCGA141456-0011-00001-000001-01.nii 295897.71 8059595.30  2816266.55  

sTCGA141456-0009-00001-000001-01.nii 900329.96 8178334.90  447320.60  

sTCGA141456-0008-00001-000001-01.nii 6985640.53 7585290.70  3365376.90  

sTCGA141456-0010-00001-000001-01.nii 311871.31 7466844.31  3483823.28  

sTCGA141456-0301-00003-000001-01.nii 890011.75 6299595.89  1635406.45  

sTCGA141456-0401-00004-000001-01.nii 183471.68 7155666.18  779333.82  

sTCGA141456-0501-00005-000001-01.nii 344707.03 9858997.34  1078502.66  

sTCGA141456-0502-00005-000001-01.nii 871276.45 6458094.25  5780984.58  

sTCGA141456-0501-00005-000008-01.nii 716513.45 2154015.42  1476905.75  

sTCGA141456-0701-00007-000001-01.nii 008502.18 6312205.01  1622797.34  

sTCGA141456-0601-00001-000001-01.nii 752751.95 2285519.67  9475575.33  



Jayanthi and Sivakumar,                                                                                                                               Vol 6 ǀ Issue 1 
 

1275 

 

sTCGA141456-0801-00008-000001-01.nii 520266.14 8699268.72  2238228.16  

sTCGA141456-0601-00006-000001-01.nii 674894.63 6296141.52  1638860.82  

sTCGA141456-0600-00001-000001-01.nii 411994.63 2285519.67  9475575.33  

sTCGA141456-0503-00005-000001-01.nii 155171.88 2259247.16  5675752.84  

sTCGA141456-0601-00006-000008-01.nii 417046.88 7599992.75  1775007.25  

sTCGA141456-1002-00010-000001-01.nii 250482.81 747688.99  5127510.47  

sTCGABBA5HY-0008-00060-000001-01.nii 651069.86 3058578.87 1975021.44  

sTCGA141456-1001-00010-000001-01.nii 104165.23 6299146.69  1635855.65  

sTCGA141456-1201-00012-000001-01.nii 557286.06 8679748.92  2257747.96  

sTCGA141456-0901-00009-000001-01.nii 294812.04 6963664.76  19135.24  

sTCGA141456-1002-00010-000018-01.nii 289661.02 749165.56  5126033.91  

sTCGA141456-1301-00013-000001-01.nii 431876.62 6734861.00  1735139.00  

sTCGA141456-1101-00011-000001-01.nii 75590.23 5769166.49  1490833.51  

sTCGA141456-1002-00010-000035-01.nii 697092.77 749176.10  5126023.36  

sTCGA141456-1002-00010-000052-01.nii 316502.29 749186.65  5126012.82  

sTCGA141456-1002-00010-000069-01.nii 488674.61 749006.65  5126012.82  

Brain Tumor Epilepsy (DICOM images are 

converted to Nifty format) 

White Matter 

Volume mm³ 

Gray Matter 

Volume mm³ 

Cerebro Spinal Fluid 

Volume mm³ 

sTCGAHT7879-0005-00001-000001-01.nii 651066.98 7362440.56  703280.56  

sTCGAHT7879-0012-00001-000001-01.nii 523552.97 1328622.95 1044256.63  

sTCGAHT7879-0004-00001-000001-01.nii 524783.45 8100533.83  195622.67  

sTCGAHT7879-0006-00001-000001-01.nii 197214.68 13284152.20  1046333.96  

sTCGAHT7879-0009-00001-000048-02.nii 560470.84 8059029.64  2311166.36  

sTCGAHT7879-0009-00001-000047-01.nii 596924.04 8058985.14  2311210.86  

sTCGAHT7879-0008-00001-000001-01.nii 644868.51 3516538.42  54702.17  

sTCGAHT7879-0007-00001-000001-01.nii 140817.35 9549643.92  995407.64  

sTCGAHT7879-0010-00001-000024-01.nii 419732.27 7951151.90  2419046.35  

sTCGAHT7879-0301-00001-000001-01.nii 170048.99 4085183.17  7068245.52  

 

 

Table 5 explains the brain volume, which was 

determined by the size of a voxel along each axis, 

of the affected regions.The  average adult human 

brain having an approximate gray matter volume 

of 600-700 cm³, white matter volume is around 

400-600 cm³, and the estimated CSF volume is 

around 1.5x108 mm³ to 2x108 mm³. These values 

are approximate and can vary based on factors 

like age, gender, genetics, of individual persons. 

Analysis of Classifier Models 
The accuracy of a model was determined by the 

ratio of true positives (TP) to false negatives (TN).  

 

Sensitivity, or recall, is the number of accurately 

predicted positives. An F1-score measures the 

balance between precision and recall, with 

precision being the proportion of correctly 

classified positives. The hyperparameter tuning 

used to optimize pre-trained models, are learning 

rate and batch size between 1e-1 and 1e-5 with 

grid search method. The learning rate 

6.2346𝑒−0.4,batch size 32 and epochs 30. The 

optimal tuning was achieved by iterating over 

parameter values within the defined range. In a 

recent study, researchers used a convolutional 



Jayanthi and Sivakumar,                                                                                                                               Vol 6 ǀ Issue 1 
 

1276 

 

neural network to classify brain tumors using MRI 

images from public datasets. Their approach 

achieved an accuracy of 86.23% in one study and 

81.6% in another study, outperforming previous 

methods this study was achieve an accuracy of 

96.09% in detecting brain tumor epilepsy using 

the CNN algorithm (57). The study is a baseline 

study in the classification of brain tumor epilepsy. 

This study has significant implications for future 

research and could potentially help clinicians in 

accurately detecting and classifying brain tumor 

epilepsy. Table 6 and Figure 15 explains the 

Support Vector Machine and CNN Architecture 

classifiers achieved the highest accuracy for 

classifying brain tumor epilepsy, with accuracies 

of 95.83% and 96.09235%. Logistic Regression 

and Gaussian Naïve Bayes also achieved high 

accuracies of 91.67% and 87.54%. The DNN 

Architecture, achieved a lower accuracy of 

79.2651%. Overall, the Support Vector Machine 

and CNN Architecture classifiers are more 

effective in classifying brain tumor epilepsy than 

the other classifiers. 

 

Table 6: Performance Metrics of Classifier Models  

Machine Learning Classifiers Accuracy % Precision Recall F-Measure 

Support Vector Machine  95.83 0.0065 0.99 0.0688 

Logistic Regression 91.67 0.003 1.022 0.071 

AdaBoost 89.36 0.0586 1.0001 0.0493 

Gaussian Naïve Bayes 87.54 0.0094 0.63 0.0687 

Gradient Boosting 87.2 0.0956 0.5454 0.1314 

Deep Learning Classifiers Accuracy % Precision Recall F-measure 

CNN Architecture 96.09235 0.1587203 0.0634625 0.539681 

DNN Architecture 79.2651 0.4761511 0.0795612 0.548796 
 

 

 
                                                       Figure 15: Analysis of Performance Metrics 

 

Conclusion 
This study was the baseline for upcoming 

research and comparative earlier studies are not 

available. Based on the results of the cluster, 

volumetric analysis, it is clear that there is distinct 

relation of genetic clusters in patients with brain 

tumors and epilepsy. Feature scaling was used to 

standardize the variables used in the analysis, 

ensuring that each variable had equal weight and  

 

 

minimizing the impact of outliers. This allowed 

for a more accurate comparison of the genetic and 

volumetric data. Overall, the findings suggest that 

there may be related genetic factors or some 

common radiomic clusters that contribute to the 

development and progression of brain tumors and 

epilepsy treatments. The limitation of marching 

cube algorithms is mainly used for surface 

reconstruction and the slice data is affect the stair 

stepping effect when the surface is paralleled with 

slices. Existing studies utilize Marching cubes to 
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quantify tumor volumes. The analysis may 

simplify the complex factors contributing to 

epilepsy.Combining multimodal data, such as 

imaging, genomics, and EEG recordings, could 

provide a better analysis. In conclusion, the 

combination of radiomic cluster, volumetric, and 

performance analysis between brain tumors, 

epilepsy, and their underlying genetic factors 

were analyzed. Further research is needed to 

understand the more related genetic mechanisms 

involved and to potentially identify the genetic 

targets of BTE for treating these conditions with 

large dataset. Real-time clinical data is not pre-

processed and this can lead to lower accuracy 

when using AI models. Additionally, patient 

reports are typically kept secure and it is difficult 

to obtain access to them for research purposes. 

Furthermore, there is a lack of separate open-

source datasets specifically focused on epilepsy 

MRI images, making it challenging to develop 

accurate models. The implementation should be 

further enhanced with the real time clinical data 

to overcome image quality, incorrect parameters, 

variations in image characteristics, subjectivity in 

interpretation for accurate prediction and on-time 

treatment. 
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