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Abstract 
Gastrointestinal (GI) endoscopy is crucial for the diagnosis of digestive diseases. It provides detailed visual 
information about the GI tract and helps identify abnormalities. However, the analysis of endoscopic images is 
challenging due to their complexity and variations caused by factors like lighting, texture and patient movement. 
These challenges highlight the need for advanced methodologies to enhance diagnostic accuracy and efficiency. This 
study introduces a novel deep learning framework integrating hybrid CNN-transformer models enhanced by a 
Convolutional Block Attention Module (CBAM). The framework utilizes a pre-trained Vision Transformer (ViT) to 
capture global image features and a convolutional neural network (CNN) to extract local features. CBAM refines the 
focus on relevant regions and enhances the interpretability and performance of the model. Ensemble learning was 
used to combine predictions from multiple models and improve the reliability and accuracy of the framework. The 
proposed model was evaluated on the publicly available Kvasir GI endoscopy dataset and demonstrated superior 
performance with an accuracy of 94.13% and a precision of 94.21%, outperforming existing methods. This 
framework offers a reliable and effective solution for analysing GI endoscopy images, potentially improving the 
accuracy and reliability of automated diagnosis. This can lead to early disease detection and improved patient 
outcomes. 

Keywords: Convolutional Block Attention Module, Gastrointestinal Disease Detection, Hybrid CNN-Transformer, 
Wireless Capsule Endoscopy. 
 

Introduction 
The gastrointestinal (GI) tract is an essential part 

of the digestive system. It is a common site for 

neoplastic and non-neoplastic diseases (1). The GI 

tract is composed of organs that extend from the 

oesophagus to the anus. Colorectal cancer (CRC) 

and stomach cancer are among the major causes 

of the global health burden, underscoring the 

importance of precise and timely diagnosis (2). 

Traditionally, endoscopy has been one of the most 

essential tools for GI tract assessment. This 

minimally invasive technique uses a forward-

viewing fiberscope to inspect the luminal surfaces 

of the organs directly. Despite the promise of new 

capabilities, accurate interpretation of endoscopic 

images remains a major challenge (3). Neoplastic 

lesions frequently begin with minor mucosal 

changes. The surface texture, crypt pattern, and 

micro vascularisation were all subject to change. 

Inexperienced endoscopists may find 

distinguishing between modest and regular 

alterations challenging. Consequently, this can 

lead to missed diagnosis and delayed treatment 

(4). The varying illumination due to light source 

changes, patient motion artifacts that create 

image instability and the complex anatomical 

topography of the GI tract with overlapping 

mucosal folds further complicate lesion diagnosis. 

Because of these constraints, endoscopists must 

review images meticulously, which increases their 

cognitive burden and may affect diagnostic 

consistency (5). These problems highlight the 

need for innovative solutions to enhance the 

diagnostic accuracy and efficiency of 

gastrointestinal disease detection. Recent 

advances in artificial intelligence (AI), notably 

deep learning algorithms based on multi-layered 

artificial neural networks, have resulted in a 

robust medical image interpretation toolbox (6). 

These algorithms, especially Convolutional Neural 

Networks (CNNs), are excellent for extracting   
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complex patterns from large medical-image 

datasets. They can accurately automate 

endoscopic procedures such as image 

segmentation and lesion detection (7). CNNs have 

demonstrated significant promise in 

gastrointestinal disease classification, as 

evidenced by various studies achieving high 

accuracy in detecting conditions such as 

precancerous oesophagus and colon polyps (8). 

Despite progress in CNNs, they still have 

limitations when it comes to capturing long-range 

dependencies in complex images. These 

dependencies are important because they show 

subtle connections between different parts of the 

image. These connections can help identify early 

signs of disease on GI endoscopy, such as changes 

in mucosal texture or blood vessel patterns. To 

address these limitations, recent advancements in 

medical image analysis have increasingly focused 

on incorporating attention mechanisms. These 

mechanisms enable models to focus on the most 

important parts of an image, which is similar to 

human visual attention. In medical imaging, 

spatial attention highlights important regions 

within an image, whereas channel attention 

emphasizes key feature channels. Both have 

proven to be especially valuable for improving the 

analysis. This has led to the development of 

various sophisticated attention modules designed 

to capture both the spatial and channel-wise 

dependencies in medical images. Transformers 

have recently emerged as promising solutions for 

medical-image analysis (9). They used self-

attention mechanisms that help capture long-

range relationships more effectively than CNNs. 

This makes transformers ideal for analyzing 

complex medical images, such as endoscopy 

images, where understanding the overall image is 

key for accurate disease detection. Deep neural 

networks based on transformers have been 

developed to improve the diagnostic accuracy of 

endoscopies. These networks have shown better 

performance in detecting gastrointestinal issues 

such as lesions and colon polyps. Vision 

transformer models with hybrid-shifted windows 

were designed to capture both short- and long-

range dependencies. Transformers have also been 

used to analyze images from endoscopic capsule 

videos, allowing a highly accurate diagnosis of GI 

tract issues, even with limited data (10). Existing 

research has highlighted the need for more robust 

models that effectively combine the strengths of 

CNNs and transformers, especially for tasks 

requiring local and global feature extraction. 

Combining CNNs and Transformers in hybrid 

models has proven to be an effective approach for 

taking advantage of their individual strengths 

(11). CNNs are good at capturing detailed local 

features, whereas transformers excel in 

understanding the broader context and long-

range relationships in data (12). However, despite 

several attempts at hybrid models (13), the 

effective merging of these two architectures 

remains a challenge. Many models still struggle to 

emphasize important local features while 

capturing the larger context in endoscopic images. 

In addition, many models do not fully utilize 

attention mechanisms to enhance feature 

extraction in CNNs and transformers. This study 

introduced a hybrid CNN-transformer model 

enhanced with a Convolutional Block Attention 

Module (CBAM) to improve the analysis of 

gastrointestinal endoscopy images. The proposed 

framework combines the local feature-extraction 

capabilities of CNNs with the ability of 

transformers to model long-range dependencies. 

CBAM focuses on spatial and channel-wise details 

to improve feature extraction. Unlike many 

existing hybrid models, this method creates a 

balanced system that addresses the limitations of 

relying solely on either local or global feature 

extraction. This approach aims to enhance the 

diagnostic accuracy and robustness in detecting 

gastrointestinal diseases. We also used ensemble-

learning techniques to improve the model's 

performance and generalizability. The proposed 

work makes the following contributions. 

• Introduced a novel hybrid model that 

combines a Vision Transformer (ViT) with an 

EfficientNet-B1 backbone enhanced by 

Convolutional Block Attention Modules 

(CBAM). This design captures detailed local 

features (EfficientNet-B1 with CBAM) and 

long-range dependencies (ViT). 

• Replacing the original squeeze-and-excitation 

blocks in EfficientNet-B1 with CBAM enabled 

the model to learn both channel-wise and 

spatial attention. This change enhances the 

focus on the critical features within the CNN 

backbone. 

• The learnable weighted ensemble method 

combined different backbone outputs. This 
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approach allowed the model to prioritize the 

most important features of each backbone. 

• The proposed model was tested on the KVASIR 

wireless endoscopic dataset and showed 

superior performance compared to current 

leading models. 

The remainder of this paper follows this 

organization:—Section 2 explains the proposed 

hybrid CNN-transformer model, including the 

integration of the Convolutional Block Attention 

Module and details of the dataset used. Section 3 

presents the experiments, results, discussion, 

ablation study and a comparison with existing 

research. Finally, Section 4 concludes the paper. 
 

Materials and Method 
This section presents a novel deep-learning 

framework for analysing gastrointestinal 

endoscopy images. The proposed architecture 

uses a hierarchical feature extraction approach to 

capture the fine details and global image features. 

First, a pre-trained EfficientNetB1 model 

enhanced with a Convolutional Block Attention 

Module (CBAM) extracts basic image features, 

such as textures and geometric patterns. 

EfficientNetB1 provides a good balance between 

the model complexity and performance. The 

integrated CBAM focuses on the essential regions 

in the image to improve feature representation. 

Subsequently, the Vision Transformer (ViT) 

architecture extracts high-level image features 

from the input. ViT is excellent at capturing long-

range dependencies and global contextual 

information, which are crucial for understanding 

an image. Using a cascade approach, this 

framework extracts detailed local information and 

global image features. The features extracted by 

EfficientNet-CBAM and ViT are combined into a 

single feature vector. This fusion uses an 

ensemble approach with learnable weights for 

each architecture, allowing the model to combine 

complementary information from both feature 

sets adaptively. The final feature vector is fed into 

a fully connected classifier for the classification 

task. Figure 1 illustrates the architecture of the 

proposed framework. The following subsections 

explain each processing stage in detail. 

 

 
Figure 1: The Proposed Architecture 

 

Convolutional Block Attention Module 

(CBAM) 
This section provides a synopsis of the 

Convolutional Block Attention Module (CBAM), an 

attention mechanism introduced by Woo et al. 

(14). CBAM enhances the feature representation 

by incorporating sequential channels and spatial 

attention mechanisms. Figure 2 shows the 

hierarchical structure of the CBAM attention block 

and provides a visual representation of the steps 

described below. Given an input feature map (F) 

of dimensions (C × H × W), where C denotes the 

number of channels and H and W represent the 
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height and width, respectively, the module 

sequentially refines this representation in two 

stages. 

Channel Attention Module 

This module dynamically modulates the 

significance of individual channels within the 

feature map. To achieve this, the process applies 

average and maximum pooling operations 

sequentially along the spatial dimensions (height 

and width). This process generates two separate 

feature maps (C × 1 × 1) that encapsulate global 

channel-wise statistical information. 

Subsequently, these feature maps were 

independently processed using a shared 

multilayer perceptron (MLP) network for 

dimensionality reduction and feature 

transformation. As shown in Figure 2B, the 

channel attention weights ((M_c)) were calculated 

using the following formula:  

 𝑀_𝑐(𝐹)  =  𝜎[𝑀𝐿𝑃(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹))]  +

 𝜎[𝑀𝐿𝑃(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹))]                                      [1] 

Where (σ) represents the sigmoid activation 

function. As shown in Figure 2B, (AvgPool(F)) and 

(MaxPool(F)) are the average and maximum 

pooled feature maps, respectively. The outputs 

from both MLPs were then aggregated through 

summation and further processed using a sigmoid 

activation function (σ) to yield the final channel 

attention weights (Mc) as a feature map of the 

dimensions (C × 1 × 1). 

Spatial Attention Module 

This module emphasizes the dynamic modulation 

of salience across spatial locations within 

individual feature channels. It inputs a channel-

wise refined feature map (F). Similar to the 

previous channel attention module, it performs 

the average and maximum pooling operations 

along the channel axis. 
 

Figure 2: Illustrates the hierarchical structure of the CBAM attention block: (A) CBAM Module, 

Architecture, (B) Channel Attention Module Architecture, and (C) Spatial Attention Module Architecture

This yields two feature maps of dimensionality (1 

× H × W) that encapsulate localized and global 

spatial statistics. The module concatenates these 

maps to facilitate the extraction of multi-scale 

spatial information. A 7 × 7 convolution operation 

subsequently reduces the dimensionality of the 

concatenated feature map. The spatial attention 

weights ((M_s)), as shown in Figure 2C, are then 

calculated as:  

 

                      𝑀_𝑠(𝐹′)  =  𝜎{𝑓_7𝑥7[𝐶𝑜𝑛𝑐𝑎𝑡(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑀_𝑐), 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑀_𝑐))]}                                    [2] 
 

Finally, a sigmoid activation function (σ) 

generated spatial attention weights (M_s), 

resulting in a feature map of dimensions (1 × H × 

W). Where f_ 7 × 7 denotes the convolution 

operation with a kernel size of 7 × 7, and the final 

refined feature map (F'') is obtained by element-

wise multiplication of the input feature map (F) 

with the channel attention weights (M_c) and 

spatial attention weights (M_s), as follows: 

 

                                                        𝐹′′ =  𝑀_𝑐(𝐹)  ⊗  𝐹 ⊗  𝑀_𝑠(𝐹′)                                                               [3] 

This refined feature map (F'') incorporates both 

channel-wise and spatial attention, potentially 

improving feature representation and model 

performance. 

Efficient Net 
Deep Convolutional Neural Networks (CNNs) 

often face a trade-off between model capacity, 
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training efficiency, and accuracy. This trade-off is 

influenced by three key dimensions:  the network 

depth (number of layers), the number of channels 

(feature maps per layer), and input image 

resolution. EfficientNet addresses this challenge 

by using a composite scaling method (15). This 

method optimizes these three dimensions with a 

fixed scaling coefficient, allowing a balanced 

increase in model capacity while maintaining 

computational efficiency. EfficientNet's 

architecture uses a stack of Mobile Inverted 

Bottleneck Convolution (MBConv) blocks. 
 

 

Figure 3: Shows the Replacement of the Squeeze-and-Excitation (SE) Module in MBConv1 with a CBAM 

Block 
 

Each MBConv block includes a squeeze-and-

excitation (SE) attention mechanism (16). The SE 

module compresses channel-wise features into a 

1D representation of input features. A fully 

connected layer estimates the weights for each 

channel and multiplies them element-wise by the 

original feature maps. This dynamic weighting 

scheme focuses on informative channels within 

the feature map and enhances feature 

representation. Replacing the SE mechanism with 

a Convolutional Block Attention Module (CBAM) 

can enhance model performance. Figures 3 and 4 

show the substitutions in MBConv1 and 

MBConv6, respectively. CBAM integrates channel 

and spatial attention and provides a more 

comprehensive focus on critical features. This 

dual-attention mechanism helps to capture more 

detailed and contextually relevant information 

and improves the model’s ability to interpret 

complex medical images. 
 

 
Figure 4: Illustrates the Replacement of the SE Module in MBConv6 with a CBAM Block
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Ensemble Feature Fusion with Learnable 

Weights 

This section describes the ensemble feature-

fusion strategy used in the proposed hybrid 

model. Ensemble learning is a well-established 

machine-learning technique. It combines the 

strengths of multiple models to achieve improved 

performance compared with a single model (17). 

In this implementation, combined features were 

extracted using two pre-trained deep learning 

models: EfficientNet with CBAM integration and a 

Vision Transformer (ViT). For a given input image 

x, E (x) represents the feature vector extracted by 

the EfficientNet-CBAM model. V (x) represents the 

feature vector extracted using the ViT model for 

the same input image. The ensemble feature 

vector F_e(x) results from a weighted linear 

combination of these feature vectors. 

                                          𝐹_𝑒(𝑥)  =  𝑤_𝑒 ∗  𝐸(𝑥)  +  𝑤_𝑣 ∗  𝑉(𝑥)                                                                  [4] 

Where w_e and w_v represent the learnable 

weights for the EfficientNet and ViT features, 

respectively. We initialized both weights to 0.5 at 

the beginning of the training process. The model 

implements these as trainable parameters and 

optimises them during the training process using 

a dedicated learning rate (ensemble_lr=.0001) 

specified in the proposed model. Figure 5 shows 

the flowchart of the proposed architecture. 

 

 
Figure 5:  The Flowchart of the Proposed Architecture 

 

Materials 

Kvasir Endoscopy Dataset: The publicly available 

Kvasir dataset (18) is a valuable resource for 

developing and evaluating deep learning 

algorithms for endoscopic image analysis. This 

dataset comprised 8,000 high-resolution images 

(with dimensions ranging from 720 × 579 to 1920 

× 1070 pixels). These images were acquired 

during upper and lower gastrointestinal 

endoscopy procedures targeting anatomical 

regions such as the esophagus, stomach, and 

colon. Each image was annotated by experts to 

indicate the presence or absence of various 

gastrointestinal pathologies, including polyps, 

ulcers, and inflammatory conditions. The analysis 

of the Kvasir dataset identified eight diagnostic 

groups: the z-line, cecum, pylorus, esophagitis, 

polyps, ulcerative colitis, dyed resection margins, 

and dyed-lifted polyps. The division of the dataset 

into training, validation, and test sets followed an 

8:1:1 split, ensuring a robust distribution for 

model development and performance assessment. 

The training set contains 6,400 images, while the 

validation and test sets contain 800 images. 

Figure 6 presents the representative images from 

the dataset. 
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Figure 6: Representative Images from Each Class: (A) Dyed and Lifted Polyps (B) Dyed Dissection 

Margins (C) Esophagitis (D) Normal Cecum (E) Normal Pylorus (F) Normal Z-line (G) Polyps and (H) 

Ulcerative Colitis 
 

Results 
The proposed method was implemented and 

tested on Google Colab Pro, a cloud-based 

platform that provides access to high-

performance computing resources. The hardware 

configuration included a 16-GB GPU, likely an 

NVIDIA Tesla series unit. The software 

environment utilized CUDA version 12.2 and 

CUDNN version 8.9. CUDA, a parallel computing 

platform developed by NVIDIA, enables the 

efficient use of GPUs for computationally 

intensive tasks such as deep learning. CUDNN, a 

library designed by NVIDIA, accelerates deep 

neural network computations on GPUs. The 

operating system used was Windows 10, with 

Python 3.8.8 as the foundation for the PyTorch 

deep learning framework. Effective image pre-

processing is crucial for optimally preparing data 

in deep learning models. This involves techniques 

to improve data quality, reduce noise, and 

enhance relevant features by applying various 

transformations to the existing images. These 

transformations can be categorized into 

geometric and color variations. Geometric 

transformations include resizing images to a 

standard size of 448 × 448 pixels, applying 

random horizontal flips to account for object 

orientation variations, and introducing slight 

rotations to help the model handle rotations in 

real-world scenarios. Color jittering introduces 

controlled variations in brightness and contrast, 

mimics real-world lighting conditions, and 

prevents the model from overfitting specific color 

distributions in the training data. Additionally, 

advanced techniques like CLAHE (contrast-limited 

adaptive histogram equalization (CLAHE) can 

enhance image contrast, potentially leading to 

better feature extraction and model performance. 

Incorporating these diverse data augmentation 

strategies effectively diversifies the training 

dataset, promoting the ability of the model to 

learn more robust and generalizable features, 

ultimately reducing overfitting and enhancing the 

performance of unseen data. The training used 

RGB endoscopic images for 50 epochs with the 

Adam optimizer and applied a low learning rate of 

0.0001 to prevent overfitting. The model 

employed categorical cross-entropy as the loss 

function, which is well-suited for multiclass 

classification tasks in gastrointestinal disease 

identification. To mitigate overfitting, the training 

process incorporated several regularization 

techniques. First, an early stopping mechanism 

halted training when the validation loss 

plateaued. Additionally, the learning rate 

dynamically adjusted by a factor of 0.01 upon 

encountering a plateaued validation loss. 
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  Figure 7: Training and Validation Results — (A) Training Accuracy, (B) Validation Accuracy, (C) 

Training Loss, (D) Validation Loss
 

Weight decay with a coefficient of 0.001 penalized 

large weights in the network. This approach helps 

the model learn more features and reduces the 

over fitting of the training data. These combined 

strategies help the model to converge to a better 

minimum and avoid over fitting. Figure 7 shows 

the accuracy and loss curves during the training. 
 

Discussion 
We conducted a rigorous experimental analysis to 

assess the effectiveness of the proposed hybrid 

model in classifying endoscopic images. This 

analysis compares the model's performance 

against established benchmarks on a well-known 

endoscopic image dataset. The dataset includes 

diverse gastrointestinal (GI) pathologies, allowing 

the model to learn and generalize across various 

disease presentations. Standard pre-processing 

techniques ensured data quality and consistency, 

enhancing the model's performance. A 

comprehensive suite of metrics, commonly used 

in multiclass classification tasks, assessed the 

model's ability to differentiate accurately between 

classes. Precision measures the proportion of 

correctly identified positive cases, whereas recall 

focuses on the model's ability to capture all true 

positives. Accuracy provides a general overview 

of the overall accuracy of the model. The F1 score 

offers a balanced view by combining precision 

and recall. The Matthews Correlation Coefficient 

(MCC) incorporates true negatives and false 

positives, providing a more robust evaluation of 

imbalanced datasets. Figure 8 shows the 

confusion matrix, which visually shows the 

model's performance by displaying the 

distribution of correct and incorrect 

classifications across all classes. 
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Figure 8: This Figure Depicts the Confusion Matrix Generated by the Model 

 

The confusion matrix visualizes the performance 

of the model for each class. The labels (0-7) 

correspond to the following gastrointestinal 

conditions: (0) Dyed and Lifted Polyps, (1) Dyed 

Dissection Margins, (2) Esophagitis, (3) Normal 

Cecum, (4) Normal Pylorus, (5) Normal Z-Line, (6) 

Polyps and (7) Ulcerative Colitis. The receiver 

operating characteristic (ROC) curve and area 

under the curve (AUC) assess the model's ability 

to discriminate between positive and negative 

instances. The precision-recall curve visualizes 

the trade-off between precision and recall for 

different classification thresholds. Figure 9 

displays the performance evaluation of the 

proposed model on both ROC curves and AUC 

scores (figure 9A), as well as precision-recall 

curves and AUC scores (figure 9B). This 

comprehensive evaluation strategy allows a 

thorough understanding of the strengths and 

weaknesses of the model in the context of 

endoscopic images for GI disease identification.  

 

 
Figure 9: Performance Evaluation of the Proposed Model on 8 GI Disease Classes using ROC Curves and 

AUC Scores (A), as well as Precision-Recall Curves and AUC scores (B) 
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The labels (0-7) correspond to the following 

gastrointestinal conditions: (0) Dyed and Lifted 

Polyps, (1) Dyed Dissection Margins, (2) 

Esophagitis, (3) Normal Cecum, (4) Normal 

Pylorus, (5) Normal Z-Line, (6) Polyps, and (7) 

Ulcerative Colitis. We conducted an ablation study 

to evaluate the contributions of individual 

components within the proposed architecture. 

This involved systematically removing and 

reintegrating crucial elements, specifically, the 

Convolutional Block Attention Module (CBAM) 

and Vision Transformer (ViT) modules. Table 1 

summarizes the results of the ablation studies. 

The model incorporating CBAM and ViT achieved 

the highest performance metrics: precision, recall, 

accuracy, and an F1 score of approximately 94%. 

This combined representation benefits from the 

feature concatenation of the CBAM-augmented 

CNN and ViT modules, suggesting that the 

attention mechanism significantly enhances the 

model's performance. Models using the CBAM 

block or the ViT module alone performed worse 

than the combined model but still showed 

respectable metrics. Excluding the ViT module 

resulted in a noticeable decline in performance, 

implying that relying solely on CNN features 

without an attention mechanism reduced the 

model's effectiveness. The absence of the CBAM 

attention mechanism and ViT module led to the 

poorest results. As shown in Table 1, the ablation 

study results prove that integrating the CBAM 

attention mechanism and ViT model improves the 

model's ability to distill essential image features 

from wireless-capsule endoscopic data. This 

enhanced representational capacity likely drives 

the superior performance metrics obtained using 

the full model configuration. 

 

Table 1: Summarizes the Ablation Study Investigating the Impact of Individual Components within the 

Proposed Model

 

Table 2 provides a detailed comparative 

evaluation of the performance of the proposed 

hybrid model and the established state-of-the-art 

methodologies for endoscopic image 

classification. This benchmark comparison 

highlights the model's effectiveness relative to 

other approaches that use the Kvasir dataset. The 

proposed method was designed to demonstrate 

superior performance through key metrics, such 

as accuracy, precision, recall, and F1-score. As 

shown in Table 2, the proposed method achieved 

an accuracy of 94.13%. It performs better than 

other state-of-the-art methods: ResNet-152 with 

Grad-CAM at 93.46%, Multi-model Classification 

at 90.20%, custom CNN for two-stage 

classification at 88.00%, FocalConvNet at 63.7% 

and MobileNetv2 at 79.15%. This strong 

performance was due to the combined effects of 

the hybrid architecture.  The EfficientNet-B1 

backbone excels in extracting fine-grained local 

features, which are crucial for identifying subtle 

textural changes indicative of disease.  

Simultaneously, the Vision Transformer 

effectively captured long-range dependencies, 

allowing the model to understand the context and 

relationships between different regions within the 

endoscopic image. CBAM further improved this by 

guiding the model to the most important spatial 

and channel-wise features. This allows it to 

capture critical details that other architectures 

often miss. This thorough benchmarking process 

is essential for gaining valuable insights into the 

effectiveness of the proposed model in classifying 

gastrointestinal (GI) diseases. 

            

Table 2: Benchmarking Performance: Proposed Method vs. State-of-the-Art Approaches 

Efficient Net  CBAM VIT     Accuracy    Precision      Recall         F1 score   MCC 

✔      x   x      91.55      91.58 91.55 91.56 90.03 

✔      ✔   x      92.24      92.38 92.24 92.25 91.02 

✔      x   ✔      92.25      92.47 92.25 92.23 90.89 

✔      ✔   ✔       94.13      94.21 94.13 94.11 93.30 

Author Methods Accuracy 

(Srivastava et al., 2022) (19) FocalConvNet 63.7% 

(Sandler et al., 2018) (20) MobileNetv2 79.15 % 

(Pozdeev et al., 2019) (21) Custom CNN for two-stage classification 88.00% 
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The high accuracy of our model has promising 

implications in clinical use. Imagine this model 

integrated into endoscopy systems to assist 

clinicians in real-time.  This could lead to earlier 

and more accurate detection of precancerous 

lesions, such as subtle polyps, which is crucial for 

preventing colorectal cancer. By identifying 

suspicious areas, the model could lower the 

chances of missed diagnoses. This would be 

especially helpful for less experienced 

endoscopists and could improve the overall 

quality of the endoscopic procedures. The 

objective nature of AI-driven analysis can also 

reduce the variability among practitioners. This 

would lead to more consistent diagnostic results 

across different clinicians and healthcare centres. 

The CBAM module plays a key role in boosting 

performance. However, further research on the 

interpretability of this model would be beneficial. 

Tools such as Grad-CAM can help visualize the 

areas the model focuses on during predictions. 

This offers valuable insights into the features that 

the model uses to distinguish between GI 

conditions. It could also reveal new diagnostic 

markers and deepen clinicians' understanding of 

the disease patterns. 
 

Conclusion 
This paper presents a novel deep-learning 

framework for endoscopy image analysis that 

combines a Vision Transformer (ViT) with a CNN 

enhanced by a Convolutional Block Attention 

Module (CBAM). This hybrid architecture 

leverages ViT's global feature extraction capacity 

and CNN's local feature extraction ability, with 

CBAM further enhancing the attentional focus. We 

assessed the efficacy of the proposed model using 

the publicly available Kvasir wireless endoscopy 

dataset, which achieved an accuracy of 94.13%, 

surpassing the performance metrics reported for 

contemporary benchmark methods. These results 

demonstrate that the hybrid CNN-transformer 

framework enhanced with CBAM effectively 

captures local and global features in endoscopic 

images. The integration of the CBAM improved 

the model's attentional focus and contributed to 

its robust performance. The high accuracy 

achieved by the model suggests its potential for 

more precise and reliable detection of 

gastrointestinal disease, which is crucial for early 

diagnosis and treatment. Despite its promising 

performance, the model has limitations in 

accurately classifying certain cases, particularly 

those with subtle anomalies. To evaluate the 

clinical utility of the model, thorough validation 

using a wide range of endoscopic image datasets, 

including data from different clinical sites and 

various types of equipment, is necessary.  

Future Scope 

Future research will prioritize expanded testing 

and explore the potential advantages of ensemble 

learning techniques for improved decision-

making. In addition, we will focus on reducing the 

computational complexity of the model to achieve 

faster and more efficient processing. This ongoing 

study aims to make the hybrid model more 

efficient and effective for clinical use, potentially 

revolutionizing endoscopic image analysis and 

improving patient outcomes through timely and 

accurate diagnosis. 
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