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Abstract 
Food spoilage and human health are greatly affected by microorganisms, such as bacteria, algae, fungi, and protozoa. 
While traditional identification methods are reliable, they are often laborious and time-consuming. In recent years, 
artificial intelligence (AI) and image processing have made significant progress in identifying and classifying 
microorganisms quickly and accurately. In this review, we will examine image processing and artificial intelligence-
based techniques for identifying and classifying microorganisms relevant to human health and food spoilage, 
comparing their effectiveness to traditional methods and assessing their impact on food safety. Bacteria, algae, fungi, 
and protozoa are the four major groups of microorganisms examined in this review. A review of applications in food 
safety, clinical microbiology, and environmental monitoring is presented in this paper. It examines how bacteria, yeast, 
and molds cause food spoilage and examines their mechanisms of action. Furthermore, the article highlights common 
foodborne illnesses and the health consequences of eating contaminated food. The paper also discusses advances in 
identifying spoilage-causing microorganisms, with a particular emphasis on artificial intelligence (AI) and image 
processing. With modern techniques, microbial contamination can be detected more accurately and efficiently, thus 
improving food safety. Finally, the review concludes by analyzing current challenges and future directions in the field, 
emphasizing the need for continued innovation in microbial detection methods. In the review, rapid detection of 
foodborne pathogens is highlighted, as well as automated spoilage monitoring. This technology has the potential to 
revolutionize food safety practices and clinical microbiology, so it must continue to be developed and validated.  

Keywords: Algae, Bacteria, Food Spoilage, Fungi, Human Health, Impact of Microorganisms, Microorganisms, 
Protozoa. 
 

Introduction 
A wide range of microorganisms, including 

bacteria, algae, fungi, and protozoa as shown in 

Figure 1, play an important role in our lives, 

particularly in the context of food spoilage and 

human health. To ensure food safety, maintain 

product quality, and promote public health, it is 

vital to understand these microscopic organisms. 

In the food industry, food spoilage is a major 

problem due to its impact on economic losses and 

consumer health. Food spoilage is commonly 

attributed to microorganisms, which can alter 

food's appearance, odor, texture, and flavor. 

Because of bacteria such as Escherichia coli, 

Salmonella, and Listeria, severe gastrointestinal 

issues and potentially life-threatening 

complications can occur (1). Additionally, certain 

algae and fungi can produce mycotoxins, which 

cause liver damage, cancer, and neurological 

disorders (2). Likewise, microorganisms have a 

significant effect on human health, both positively 

and negatively (3). Probiotics are beneficial 

bacteria that contribute to the maintenance of a 

healthy gut microbiome, which is crucial for 

nutrient absorption, digestion, and immune 

system function (4). In contrast, pathogenic 

microorganisms, like Clostridium difficile and 

Helicobacter pylori, can cause severe 

gastrointestinal disorders, such as colitis, 

diarrhea, and peptic ulcers (5). The importance of 

identifying and classifying microorganisms for 

preventing food spoilage and maintaining human 

health cannot be overstated. By detecting these 

microorganisms accurately and efficiently, we can 

develop targeted strategies for food preservation, 

quality control, and public health. This review 

paper aims to summarize the effects of bacteria, 

algae, fungi, and protozoa on human health and 

food spoilage. As well as the associated risks and  
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consequences, these microorganisms will be 

examined in depth. To evaluate the health risks 

associated with these microorganisms. To 

evaluate whether image processing and artificial 

intelligence techniques are capable of identifying 

these microorganisms. To highlight their potential 

for improving food safety and public health 

practices, these advanced technologies will be 

evaluated in comparison to traditional 

identification methods for performance, accuracy, 

and limitations. 

 

 
Figure 1: Types of Microorganisms (3) 

 

Reviewing these objectives, the paper will develop 

a comprehensive understanding of 

microorganisms in food spoilage and human 

health, as well as emerging techniques for 

identifying and categorizing them. To maintain 

food quality and safety, microorganisms 

responsible for spoilage must be identified and 

classified. The challenge can be addressed non-

invasively and rapidly with image processing. The 

use of advanced imaging systems can detect and 

distinguish bacteria, yeasts, and mold typically 

associated with food spoilage. Using time-lapse 

imaging and computer vision techniques (6) can 

quantify microbial growth rates on different food 

substrates and predict spoilage progression. 

Integrating environmental data with imaging 

results can reveal how temperature and humidity 

affect microbial growth patterns (7). The 

dynamics of food spoilage are better understood 

by multifaceted approaches. Food safety 

assessments can be significantly shortened with 

rapid imaging-based screening methods for 

detecting pathogenic microorganisms in food 

samples (8). 
 

 
Figure 2: Search Strategy 

 

The above-mentioned Figure 2 shows the search 

strategy of this study for the different 

microorganisms based on Food Spoilage and 

Health Care. The Food spoilage will be discussed 

in this review, including microbial growth 

patterns across various food types, the 

biochemical changes caused by microorganisms, 

and the sensory changes resulting from the 

deterioration. There are different types of 

spoilage microorganisms and patterns for 
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different foods. It will include a discussion of 

pathogens and illnesses associated with 

foodborne pathogens, bacteria’s ability to produce 

toxins, and antimicrobial resistance. Due to their 

efficiency, speed, and non-invasive capabilities, 

image processing and AI techniques increasingly 

relevant for microorganism identification. With 

these methods, large numbers of samples can be 

processed rapidly, identification can be 

automated, and microbial contamination can be 

detected earlier than previously thought the 

methods are also applicable to detecting new 

pathogens more quickly than conventional 

techniques (7, 8). By integrating these techniques 

with other food safety technologies, 

comprehensive quality control measures can be 

implemented in the food industry, ultimately 

enhancing food safety and public health.The 

growing global concern over food safety has 

focused attention on microorganisms and food 

spoilage. As foodborne illness prevalence 

increases and public health crises result, better 

understanding of microorganisms involved in 

food spoilage is urgently needed. It is critical to 

identify and control these microorganisms to 

reduce food waste, ensure food quality, and 

protect consumer health. In addition, the paper 

addresses the knowledge gap in integrating 

artificial intelligence and image processing into 

the identification and management of spoilage-

causing microbes. In the current food safety 

scenario, it is difficult to detect and manage 

microorganisms responsible for spoilage 

effectively. Even though traditional methods of 

microbial identification are effective, they can be 

time-consuming. A revolution is underway in this 

field with the rise of artificial intelligence (AI) and 

image processing. With these modern techniques, 

spoilage microorganisms can be detected more 

accurately and faster and large datasets can be 

analyzed in real-time. By reducing food waste and 

economic losses, food safety measures are 

enhanced. Because of their integration into food 

safety protocols, these technologies provide a 

more effective and reliable approach to providing 

public health protection. 

Review in Role of Microorganism in 

Food Spoilage  
Various microorganisms can cause food spoilage 

and pose serious health risks. Bacteria cause most 

foodborne illnesses and spoilage. Various food 

products are frequently contaminated with 

Escherichia coli, Salmonella, and Listeria 

monocytogenes, which can cause severe 

gastrointestinal issues and potentially life-

threatening complications (2). Although lactic 

acid bacteria are beneficial in food fermentation, 

they can affect the taste and texture of some 

products (9). The impact of microorganisms in 

food spoilage is shown in Figure 3. 

 

 
Figure 3: Microorganisms in Food Spoilage (10) 

Bacteria 

Food spoilage is largely caused by bacteria, 

causing substantial economic losses and health 

risks. Gram-negative psychrotrophic bacteria, 

especially Pseudomonas spp., primarily cause the 

spoilage of protein-rich foods. By producing 

extracellular lipases and proteases, these bacteria 

break down food components, causing off flavors 

and textures. The presence of psychrotrophic 

bacteria in dairy products can have a significant 

impact on quality. It has been found that 

Pseudomonas fluorescens produces heat-stable 
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enzymes that can survive pasteurization (11). 

Some products can be spoilt by lactic acid bacteria 

(LAB), which are often beneficial in food 

fermentation. Vacuum-packed meat and poultry 

can develop slime, discoloration, and off-odors 

caused by LAB. Leuconostoc spp. and 

Lactobacillus spp. Alicyclobacillus acidoterrestris 

has emerged as a major spoilage organism in fruit 

juices, producing guaiacol that imparts a 

medicinal odor (12). Spoilage organisms like 

Shewanella putrefaciens and Photobacterium 

phosphoreum in seafood (13) cause the 

characteristic “fishy” odor of spoiled fish. The 

spoilage potential of bacteria extends beyond 

their direct effect on food. Pathogenic bacteria can 

grow in environments created by spoilage 

bacteria. As an example, certain LAB can grow in 

vacuum-packed meat, creating an ideal 

environment for Clostridium botulinum (14). 

Moreover, bacteria that form biofilms on surfaces 

or equipment may become more resistant to 

cleaning and sanitizing procedures, leading to 

spoilage (15). 

Algae 

A number of aquatic food sources, particularly 

seafood, are contaminated and degraded by algae, 

which are less commonly associated with 

traditional food spoilage than bacteria and fungi. 

The main concern with algae is harmful algal 

blooms (HABs), which influence the quality and 

safety of seafood. The toxins produced by certain 

algae can accumulate in shellfish and fish, making 

them unsafe for consumption. As an example, 

Alexandrium spp. Produce saxitoxins that cause 

paralytic shellfish poisoning. These toxins can 

pose a significant challenge for the seafood 

industry long after the algal bloom has dissipated 

(16). It is also possible for algae to affect 

freshwater food. A cyanobacterial bloom in a lake 

or reservoir can release molecules like geosmin 

and 2-methylisoborneol, which contribute to 

odors and tastes in drinking water (17). Algal 

blooms can deplete oxygen in water and change 

pH, stressing or killing farmed fish. Without 

prompt action, not only are economic losses 

caused, but also the affected stock can quickly 

spoil (18). In the same way, Pseudo-nitzschia 

produces domoic acid, a cause of amnesic shellfish 

poisoning. In humans, this toxin can accumulate in 

shellfish and fish, leading to neurological 

symptoms (19). Algal blooms can indirectly affect 

the quality of seafood. The mass mortality of fish 

during HABs can spoil wild-caught fish 

populations quickly. Even non-toxic algal blooms 

can produce off-flavors in fish and shellfish, called 

"earthy" or "musty" tastes, which greatly reduce 

their market value (20). As climate change 

progresses, HABs may become more frequent and 

severe, potentially affecting food spoilage and 

safety. This highlights the importance of 

continuous algal research and monitoring (21). 

There are some algae that are used directly in 

food production, but not directly in spoilage. 

Spirulina supplements, for example, can become 

contaminated with bacteria when improperly 

handled or stored (22). 

Fungi 

In the food industry, fungi, particularly molds, are 

major contributors to food spoilage. Consumers 

are often threatened by serious health risks from 

their mycotoxins produced by them. Among the 

most common fungi associated with food spoilage 

are Aspergillus species. For example, Aspergillus 

flavus produces aflatoxins, which are particularly 

harmful to cereals, nuts, and oilseeds. At high 

doses, these mycotoxins can cause acute toxicity 

and cause cancer (23). In the field, Fusarium 

species produce mycotoxins, but can continue to 

grow in storage. Among those issues are 

gastrointestinal problems and reproductive 

disorders caused by F. graminearum's 

deoxynivalenol and zearalenone production in 

cereals (24). When grown uncontrolled, P. 

roqueforti and P. camemberti can spoil dairy 

products, causing off-flavors and discoloration 

(25). Similarly, Aspergillus ochraceus and 

Penicillium verrucosum produce ochratoxin A, 

which has been linked to nephrotoxicity and can 

cause cancer (26). Food crops may become more 

contaminated by mycotoxin from climate change. 

Mycotoxin production may be enhanced by 

changing temperature and precipitation patterns, 

posing new challenges to food safety (27). Food 

preservation faces significant challenges in 

controlling fungal spoilage. The development of 

fungicide resistance and consumer demand for 

minimally processed foods necessitate ongoing 

research into novel preservation strategies (28). 

The nutritional and organoleptic properties of 

foods can also be affected by fungal spoilage. 

Regardless of visible growth, mold can cause off-

flavors, discolorations, and texture changes (29).  
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A significant spoilage organism is Penicillium 

species, especially in fruits and vegetables. Apples 

and pears are susceptible to blue mold, called P. 

expansum. In system report patulin as a 

mycotoxin that suppresses immune system 

functions (30).  

Protozoa 

While protozoa are less commonly associated 

with food spoilage than bacteria and fungi, they 

can have significant impacts on food safety and 

quality. Direct food spoilage is not their primary 

concern, but contamination that can lead to food 

poisoning. There is a protozoan parasite called 

Cryptosporidium that threatens food safety. The 

contamination of water sources used for food 

processing by free-living amoebae such as 

Acanthamoeba and Naegleria is not directly 

related to food spoilage. According to the study, 

these amoebae are considered potential vectors 

for other pathogenic microorganisms in water 

systems (31). As discussed in the work, Food 

products containing water or fresh produce may 

be contaminated with Giardia (32). The authors 

stressed that effective methods should be 

developed to detect foodborne giardiasis and 

ensure proper sanitation practices (33). A 

contaminated water source or fresh produce can 

lead to cryptosporidiosis in humans. A review of 

Cryptosporidium’s effects on food safety, who 

noted its resistance to water treatment methods 

(34). A need for improved detection methods and 

control strategies for food production and 

processing was highlighted. Food safety is also 

concerned about Giardia duodenalis (also known 

as G. lamblia or G. intestinalis). A soil or water 

contaminated with oocysts can harbor 

Toxoplasma gondii, which mostly affects meat 

products. A study explores the global impact of 

Enterobacter hepatica, including its potential for 

foodborne transmission, and highlights the 

challenges in diagnosing and controlling it (35). In 

the work they evaluated T. gondii in food animals 

and its implications for food safety, emphasizing 

the need for improved control measures. Several 

protozoan parasites affect the quality and safety 

of seafood in aquaculture. Fish health and seafood 

quality are negatively affected by protozoan 

parasites, which can reduce fish quality and 

marketability, though some of these parasites do 

not cause human illness. A bacterium that causes 

amoebiasis, Entamoeba histolytica, can 

contaminate food and water and cause disease.  

Impact of Microorganisms in Human 

Health  
The existence of microorganisms can be beneficial 

as well as dangerous. A significant impact of 

bacteria on human health is attributed to them, in 

particular. The gut microbiome, specifically 

bacteria, is responsible for digestion, absorption 

of nutrients, and maintaining the immune system. 

The Algae, particularly certain types of 

cyanobacteria, can produce toxins that can cause 

health problems. A harmful algal bloom can have 

various health effects in freshwater and marine 

environments. According to the work, 

cyanobacterial toxins cause liver damage, 

neurotoxicity, and skin irritation. Despite being 

less common than bacteria or fungi, protozoa can 

cause severe diseases. The malaria-causing 

Plasmodium species remain a significant health 

concern, particularly in tropical and subtropical 

regions by WHO, 2019 (36). While fungi in the 

human microbiome are less numerous than 

bacteria, evidence suggests they can have 

detrimental effects on health. Aspergillus species, 

such as fumigatus (37), can cause severe 

respiratory infections in immunocompromised 

individuals. Interaction between microorganisms 

and human health is complex. The gut 

microbiome has been linked to health conditions 

such as obesity, neurological disorders, and 

inflammatory bowel disease (38). Pregnant 

women and people suffering from 

immunodeficiency can be severely ill from 

Listeria monocytogenes infections (39). 

Approximately as many bacteria live in our bodies 

as humans, according to (40). Nevertheless, 

pathogenic bacteria can cause a wide range of 

diseases. In personalized medicine, the gut 

microbiome can also affect the efficacy and 

toxicity of medications (41). New health 

challenges may result from climate change, 

including changes in pathogenic microorganism 

distribution and prevalence. Temperatures may 

increase the frequency of harmful algal blooms 

and expand the range of vector-borne diseases. To 

develop new therapeutic approaches, it is crucial 

to understand the complex interactions between 

humans and microorganisms. The impact of 

microorganisms in human health is depicted in 

Figure 4. 
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Figure 4: Impact of Microorganisms in Human Health (42)
 

Advances in Identification of 

Microorganisms 
This section discusses the identification and 

detection techniques employed in the 

identification and classification of 

microorganisms. By using image processing, 

microorganisms can now be identified faster, 

more accurately, and more automatically than 

they could in the past, due to advances in image 

processing. With image processing, detailed 

morphological analyses can be conducted, 

automated cell counting can be performed, and 

colonies can be identified automatically. By 

analyzing complex patterns and features, artificial 

intelligence and machine learning further enhance 

microbial recognition. The study of microbial 

behavior and interactions is possible thanks to 

techniques such as 3D imaging, fluorescence 

analysis, and real-time monitoring. Medical 

diagnostics, metagenomics, and environmental 

monitoring are all impacted by these innovations, 

which transform how we study and identify 

microorganisms. In the following sections, we 

discuss methods employed, potential implications, 

and challenges. The following Figure 5 depicts the 

timeline of identification and classification of 

microorganisms.  

 

 
Figure 5: Timeline for Microorganisms Identification and Classification 

 

Traditional Methods 
In the food industry and clinical settings, 

traditional methods for microbial identification 

and classification have been widely used for 

decades. The microorganisms are typically 

cultured, followed by morphological, biochemical, 

and serological analyses. These techniques may 

be reliable, but they are time-consuming, labor-
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intensive, and require specialized knowledge. 

Some microorganisms are difficult to culture or 

display similar morphological and biochemical 

characteristics, complicating identification. The 

following Table 1 describes the methods that are 

followed traditionally for the identification of 

microorganisms.  

 

Table 1: Traditional Methods for Identifying Microorganisms  

S.No. Author (s) Research Purpose Challenges Potential 

Implications 

1. Tournas, V. H. 

(43) 

An overview of traditional 

methods for identifying spoilage 

microorganisms. 

 

The process takes 

time and labor. 

Identification of 

some slow-growing 

or fastidious 

bacteria challenging 

Detection of food 

spoilage microbes 

rapidly, leading to 

development of 

alternatives. 

3. Singh Namita. 

(44) 

Analyze traditional 

microbiological methods for 

detecting and enumerating 

Escherichia coli. 

A lack of 

differentiation 

between pathogenic 

and non-pathogenic 

E. coli strains 

Increasing 

awareness of 

traditional coliform 

testing limitations 

4. Hariram et al., 

(45) 

Utilize traditional culture-based 

methods to identify and quantify 

Bacillus cereus in food. 

Possibly 

underestimating B. 

cereus level due to 

spores. 

Detection and 

enumeration 

challenges 

associated with B. 

cereus in food. 

5. Abubakar et 

al.,  (46) 

Analyze traditional culture-

based methods for detecting 

Cryptosporidium and Giardia in 

food and water. 

Traditional 

techniques for 

detecting protozoan 

parasites are not 

sensitive 

Awareness of 

limitations of 

traditional methods 

of controlling 

Cryptosporidium and 

Giardia in food and 

water 

6. Gracias et al., 

(47) 

Detecting and identifying 

Enterococcus species in food 

and clinical samples using 

traditional and molecular 

methods. 

On the basis of 

phenotypic 

characteristics, 

Enterococcus 

species may be 

misidentified 

Traditional culturing 

and biochemical 

methods for 

detecting 

Enterococcus are 

limited 

7. Fleet G H (48) Examine traditional methods of 

identifying and analyzing food 

spoilage yeast species. 

Similar yeast 

species are difficult 

to distinguish 

For rapid and 

reliable yeast 

identification, 

molecular and 

automated methods 

could be developed 

8. Suihko et al., 

(49) 

Identify Alicyclobacillus species 

in fruit juice concentrates using 

16S rRNA gene sequencing. 

Sequence 

similarities among 

16S rRNA genes 

may misidentify 

Alicyclobacillus 

species. 

Guides for selecting 

and combining 

appropriate methods 

for detecting these 

spore-forming, 

thermophilic 

bacteria 
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Image Processing Techniques 
The field of microbial identification and 

classification has benefited greatly from image 

processing techniques. To analyze and classify 

microbial cells based on their morphological and 

structural characteristics, digital images are 

acquired, segmented, features extracted, and 

pattern recognition algorithms are used. By using 

image, processing techniques, microorganisms, 

such as bacteria, algae, fungi, and protozoa, are 

identified faster, more accurately, and more 

objectively. The success of these techniques 

depends on the quality of the images, the choice of 

appropriate image processing algorithms, and 

extensive training datasets. Thus, the review 

related to the image processing techniques takes 

part in the microorganisms identification is 

discussed in the following Table 2. 
 

Table 2: Image Processing Techniques for Identifying Microorganisms  

S.N

o. 

Author(s) Research Purpose Advantages 

over Traditional 

Methods 

Challenges Potential 

Implications 

1. Matenda et 

al., (50) 

Using hyperspectral 

imaging, detect and 

identify spoilage 

bacteria in food 

products 

Multiple samples 

can be analyzed 

simultaneously 

To ensure 

reliable feature 

extraction, 

acquire and 

preprocess 

images 

accurately 

A reduction in 

labor 

requirements for 

food microbial 

testing 

2. Ravanbakhs

h et al., (51) 

Analyze the use of 

deep learning models 

to identify Salmonella 

and E. coli, in food 

samples. 

Automated 

feature 

extraction from 

microscopic 

images 

A large, diverse, 

and well-

annotated 

training dataset 

is essential 

Improved food 

safety by rapid 

and accurate 

pathogen 

detection 

3. Otálora et 

al., (52) 

Identify and classify 

microalgae species 

using image 

processing. 

Analyzing 

microalgae 

samples with 

automation and 

high-throughput 

Microalgae 

species with 

similar 

morphologies 

may be difficult 

to differentiate. 

Improved 

monitoring and 

management of 

microalgae in 

water quality 

and biofuel 

production 

4. Zhang et al., 

(53) 

Analyze microscopic 

images to identify and 

classify bacteria, fungi, 

and protozoa using 

image-processing 

techniques. 

Development of 

automated, high-

throughput 

methods to 

identify bacteria 

Adapting 

techniques of 

image 

processing to 

varying imaging 

modalities 

Improved 

surveillance and 

control of 

microorganisms 

in various 

settings, 

including food 

processing, 

clinical 

diagnostics, and 

environmental 

monitoring. 

5. Wang et al., 

(54) 

Using automated 

image analysis 

techniques to 

enumerate 

microorganisms in 

food samples. 

Improved 

reproducibility 

and objectivity in 

the quantification 

of microbial 

populations 

Managing 

variation in 

morphology 

and image 

quality 

Food quality 

control and 

safety 

assessments are 

more efficient 

and consistent. 

6. Zhang et al., Automated image Microbial Training and Microbiology 
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(55) analysis techniques for 

microbe identification 

and classification 

identification 

based on image 

processing and 

machine learning 

benchmarking 

models with 

limited publicly 

available 

datasets 

image 

processing 

methods should 

be further 

developed and 

integrated 

7. Satyanaraya

na et al., 

(56) 

Automated image 

analysis system for 

rapid identification of 

probiotic bacteria in 

food. 

A faster and more 

accurate method 

of identifying 

probiotic strains 

The challenges 

of reliably 

extracting and 

classifying 

features from 

images 

Monitor and 

control 

probiotic-

containing food 

products better. 

8. Omarova et 

al., (57) 

Analyze water samples 

for protozoan cysts 

and algal cysts using 

digital image analysis. 

Methods that 

identify these 

microorganisms 

more quickly and 

objectively 

Visually similar 

cysts of 

different 

species are 

difficult to 

distinguish 

Fast and reliable 

protozoan and 

algal cyst 

detection for 

enhanced water 

quality 

monitoring 

9. Mahalaksh

mi Priya et 

al., (58) 

Create an integrated 

pipeline for the 

segmentation of 

bacterial images using 

microscopy. 

Adaptable ROI 

cropping, image 

enhancement 

techniques, and 

specialized 

filtering are 

combined to 

overcome low 

contrast and 

illumination 

issues. 

Low contrast, 

illumination 

variations, and 

heterogeneous 

bacterial shapes 

and textures 

In microbiology, 

improved 

characterization, 

classification, 

and other 

analytical tasks. 

 

Artificial Intelligence (AI) Techniques 
Artificial intelligence (AI) has transformed 

microorganism classification by providing faster, 

more accurate, and automated solutions 

compared to traditional methods. Techniques like 

machine learning algorithms, such as support 

vector machines and decision trees, are used to 

classify microorganisms based on morphological 

or genetic features. Deep learning, particularly 

convolutional neural networks (CNNs), excels in 

image-based classification, automatically 

detecting patterns in microbial images. Transfer 

learning and ensemble learning further enhance 

accuracy by utilizing pre-trained models and 

combining multiple algorithms. These advances 

enable more efficient microorganism 

identification in fields ranging from healthcare to 

environmental monitoring. Machine learning and 

deep learning techniques have revolutionized 

microbial identification and classification. 

Because of these advanced computational 

methods, microbial image data can be analyzed to 

reveal complex patterns and relationships. The 

techniques of AI in the process of identifying 

microorganisms are discussed in Table 3 with the 

research ideas, challenges and potential 

implications.  

 

Table 3: AI Techniques for Identifying Microorganisms  

S.N

o. 

Author(s) Research Purpose Advantages over 

Traditional 

Methods 

Challenges Potential 

Implications 

1. Shelke et al., 

(59) 

Analyze 

microbiology's 

Analysis of complex 

patterns in 

Datasets must be 

large, diverse, 

A better way to 

detect, control, 
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applications and 

challenges using 

artificial 

intelligence. 

microbial data that 

are difficult to 

discern 

and well-

annotated 

and monitor 

microorganisms 

in food 

processing, 

clinical 

diagnostics, and 

the environment 

2. Kang et al., 

(60) 

To identify the 

optimal region of 

interest (ROI) for 

bacteria 

identification. Apply 

LSTM to classify 

major foodborne 

pathogens 

Detects and 

classifies 

microorganisms 

more accurately 

than traditional 

image analysis 

In more complex 

scenarios, like 

identifying 

bacteria mixtures 

in various food 

matrices, 

validation may be 

required. 

The technology 

could minimize 

food recalls and 

improve food 

safety risk 

management by 

providing an 

efficient way to 

identify 

pathogens. 

3. Fernández 

et al., (61) 

Analyze the use of 

machine learning 

algorithms to 

identify Candida 

species. 

An accurate 

identification of 

Candida species 

compared to 

conventional 

methods 

Data acquisition 

and sample 

preparation 

challenges 

A reduction in 

the use of 

traditional 

identification 

methods in 

clinical 

microbiology 

4. Madkour et 

al., (62) 

Identify and classify 

microalgae species 

with deep learning 

techniques 

Analyzing 

microalgae cells 

more precisely than 

microscopy-based 

methods 

Identifying 

closely related or 

morphologically 

similar 

microalgae 

Monitoring and 

management of 

microalgae in 

water quality 

assessment, 

biofuel 

production, and 

environmental 

remediation. 

5. Robert (63) Identify and classify 

protozoan cysts and 

algae cysts using 

machine learning 

algorithms. 

Analyses and 

integration into 

monitoring systems 

with high-

throughput 

Distinguishing 

visually similar 

cysts from 

different species 

Monitoring and 

controlling water 

quality more 

effectively. 

6. Karanth et 

al., (64) 

Create deep 

learning models for 

identifying 

Salmonella and E. 

Coli from food 

Analyzing food 

samples at high 

speed 

Modality and 

food matrix 

adaptation 

challenges for 

deep learning 

Improving food 

safety through 

microbial 

surveillance and 

control 

7. Tanui et al., 

(65) 

Identify Listeria 

monocytogenes and 

other Listeria 

species in food 

samples using 

machine learning. 

Biochemical and 

molecular methods 

are more accurate at 

identifying Listeria 

species 

The genetic 

diversity of 

Listeria species 

poses challenges. 

Food industry 

surveillance and 

control measures 

improved to 

reduce listeriosis 

outbreaks. 

8. Mahalaksh

mi Priya et 

Marine biology 

machine learning 

Using machine 

learning, the 

The identification 

task is time-

Marine 

ecosystems will 
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al., (66) approaches to 

identify and classify 

plankton 

automatically. 

identification of 

multiple species of 

plankton is 

automated using the 

extracted features, 

potentially 

increasing research 

speed and 

consistency. 

consuming, 

requires 

considerable 

expertise, and is 

resilient to 

variations in 

noise, occlusion, 

and illumination. 

be managed 

better and 

plankton ecology 

and 

biogeochemistry 

will be improved. 

9. GovindaPra

bhu et al., 

(67) 

Identify automated 

methods of 

identifying wild 

animals to support 

conservation efforts 

using AI. 

Utilizes advanced AI 

technologies like 

CNNs and DQN, 

combined with 

sophisticated 

preprocessing 

techniques, to 

enhance efficiency 

and scalability of 

conservation 

monitoring. 

The environment 

is changing, there 

are a lot of 

species, and 

classification 

accuracy is 

important. 

Monitoring 

wildlife, 

assessing 

biodiversity, and 

managing 

habitats has been 

improved. 

 

Machine Learning (ML) Algorithms 
In food spoilage and health contexts, machine 

learning techniques are extensively utilized to 

identify and classify microorganisms. 

Support Vector Machines (SVMs) is particularly 

useful for classifying objects based on their 

morphological characteristics. Using 

hyperspectral imaging, SVMs have been used to 

classify spoilage-causing bacteria in dairy 

products. For microbial feature analysis, SVM's 

hyperplane optimization ensures robust 

separation of classes, even in high-dimensional 

spaces.  

Decision Trees and Random Forests microbial 

species can be distinguished based on 

environmental and morphological parameters 

using decision trees. By aggregating multiple tree 

outputs, Random Forests further improve 

accuracy. They have been used to differentiate 

microbial species in different environments, such 

as soil and water. For example, by using SVMs, 

spoilage-inducing bacteria such as Pseudomonas 

fluorescens can be classified using hyperspectral 

imaging data. By detecting contamination early, 

these algorithms significantly reduce waste. 

Deep Learning (DL) Algorithms 
The ability to extract features in a microbial 

sample using deep learning techniques and high 

accuracy has revolutionized microbial detection. 

Convolutional Neural Networks (CNNs) are 

excellent at detecting and classifying images (65). 

Microbial images can be automatically analyzed 

using CNNs due to their hierarchical structure. In 

comparison to traditional methods, CNNs have 

been successful in identifying Listeria 

monocytogenes in food samples. Adapting pre-

trained models for microorganism detection in 

complex food matrices using transfer learning 

with CNNs further enhances performance.  

Long Short-Term Memory Networks (LSTMs) 

is a highly effective algorithm for analyzing time-

series data, making it suitable for the analysis of 

microbial growth patterns. Food storage and 

preservation studies have used them to track 

microbial population changes over time. For 

Example, in complex environments, CNNs 

combined with transfer learning have shown 

significant advancements in identifying 

pathogenic microorganisms such as Salmonella. 

The systems reduce false negatives and improve 

sensitivity, especially in the case of processed 

foods. Using modern AI methodologies, microbial 

identification has been further advanced by 

introducing: Transfer Learning developing 

accurate models is accelerated by using pre-

trained models instead of large datasets. By 

adapting models trained on unrelated datasets, 

transfer learning has been used to identify 

microbial species in diverse environments. Using 

Ensemble Learning, when multiple algorithms are 

combined, such as Random Forests and CNNs, the 

model's robustness is improved and prediction 
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variance is reduced. Water samples have been 

classified using this approach, improving 

detection accuracy under varying environmental 

conditions. To make the study more credible and 

practical, it is imperative to include detailed 

validation studies or real-world examples of AI-

based microorganism detection. The food safety 

industry uses hyperspectral imaging together 

with artificial intelligence to detect spoilage 

bacteria such as Escherichia coli and Salmonella. 

They are capable of detecting pathogens more 

rapidly than traditional culture-based methods 

because they utilize advanced image processing 

techniques. The use of AI-powered diagnostic 

platforms in clinical microbiology has also been 

real-world implemented, with convolutional 

neural networks (CNNs) being used to identify 

fungal infections like Candida albicans. In these 

examples, AI demonstrates speed and accuracy 

over traditional methods, thus addressing their 

limitations. Through the inclusion of these case 

studies, the transformational potential of these 

technologies can be demonstrated and the gap 

between theory and practice can be bridged. The 

practicality of AI methods in detecting 

microorganisms is further demonstrated by their 

application in real-world situations. For instance, 

hyperspectral imaging coupled with machine 

learning is used in the dairy industry to detect 

spoilage bacteria like Pseudomonas fluorescens. 

By intervening early, shelf life can be extended 

and product safety can be ensured. The AI-based 

image analysis of water quality has also been used 

to identify harmful protozoa in drinking water 

supplies, such as Cryptosporidium. By integrating 

image segmentation and classification algorithms, 

these systems can detect contaminants more 

efficiently than traditional microscopy. It is 

evident from the inclusion of such use cases that 

AI-based methods are versatile and effective 

across a wide range of sectors. 

Case Studies and Applications  
Real-world implementations of microbial 

identification and classification techniques are 

examined in this section. Traditional, image 

processing, and AI-based methods are explored in 

diverse case studies to demonstrate their 

usefulness, effectiveness, and potential impact. 

The overall case studies and application from the 

discussed works is described with its role and key 

technology is depicted in the following Table 4. 

 

Table 4: Case Studies and Applications  

S.No. Case Study/ 

Application 

Role Key Technology Summary 

1. Microorganism 

enumeration in 

fermented dairy (10) 

Food industry 

microbial testing 

streamlined 

Automated 

microscopic 

image analysis 

Quality control can be 

done more objectively by 

quantifying microbial 

populations. 

2. Detection of spoilage 

bacteria in dairy 

products (42) 

Improve quality 

control and shelf 

life 

Analyzing 

hyperspectral 

images 

Automated system for 

detecting and 

quantifying spoilage 

bacteria in dairy 

products, enabling early 

intervention. 

3. Food and clinical 

Enterococcus 

identification (43) 

Surveillance and 

control of microbes 

Methods based on 

culture and 

molecular 

techniques 

Identification of 

Enterococcus more 

accurately using 

complementary 

molecular techniques. 

4. Water and food testing 

for Cryptosporidium and 

Giardia (45) 

Assessment of 

water and food 

safety 

Traditional 

culture-based 

methods and 

molecular 

techniques 

More sensitive and 

specific detection 

techniques are needed 

for these protozoan 

parasites due to the 

limitations of traditional 

methods. 
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5. Detecting Salmonella 

and E. coli in meat and 

poultry products (50) 

Food safety and 

foodborne illness 

prevention 

Analysis based on 

deep learning 

Pathogenic 

microorganisms can be 

detected and controlled 

quickly in food samples. 

6. Biofuel monitoring of 

microalgae (51) 

Manage the 

environment and 

produce renewable 

energy 

Microalgae 

identification 

using deep 

learning 

An automated, high-

throughput analysis of 

microalgae samples for 

biofuel production. 

7. Clinical identification of 

Candida species (60) 

 Improve fungal 

infection 

diagnostics 

Using machine 

learning 

algorithms for 

mass 

spectrometry 

Identification of Candida 

species from patient 

samples faster and more 

accurately. 

8. Water supply protozoan 

and algal cyst detection 

(61) 

Monitoring water 

quality and 

assessing public 

health risks 

Machine learning-

based image 

analysis 

Analyzing water samples 

for protozoans and algae 

cysts 

9. Plant Disease 

Identification (68) 

Technology-based 

digitization and 

preservation of 

Tamil medicinal 

plant knowledge. 

Models using 

deep learning 

(EEXR) and image 

processing 

techniques 

including RBZR 

Augmentation. 

A combination of 

traditional Tamil 

knowledge and deep 

learning technology is 

used to identify 

medicinal plants leaves. 

An innovative deep 

learning model (EEXR) is 

used to achieve 96.71% 

accuracy in plant 

identification. This 

approach preserves 

ancestral medical 

knowledge and supports 

traditional healers. 
 

Discussion 
Several key findings have been obtained from the 

recent literature review on the use of image 

processing and artificial intelligence for microbial 

identification and classification: Compared to 

traditional culturing and microscopy-based 

methods, advanced image processing techniques 

offer significant advantages. With these advanced 

techniques, spoilage bacteria, foodborne 

pathogens, microalgae, and protozoan/algal cysts 

can be identified faster, more accurately, and 

more objectively. Microbial identification systems 

have been improved with artificial intelligence, 

particularly machine learning and deep learning 

algorithms. By analyzing complex patterns in 

microbial image data, AI-based methods can 

detect and classify bacteria better than traditional 

methods. Varieties of case studies have 

successfully used these advanced identification 

techniques, including real-time food quality 

monitoring, rapid foodborne pathogen detection, 

water quality assessment, and fungal infection 

diagnostics. The findings from this review 

demonstrate the critical role microorganisms play 

in food spoilage. A wide range of microorganisms, 

including bacteria, yeasts, and molds, have been 

identified as the primary cause of spoilage. In 

addition, contaminated food can cause foodborne 

illnesses, some of which can be life-threatening. It 

is clear from this review that advanced 

identification methods, especially artificial 

intelligence (AI) and image processing, are 

gaining importance. These technologies are 

showing great promise for improving the 

accuracy and speed of spoilage-causing 

microorganism detection. By analyzing large 

datasets in real-time and detecting subtle 

microbial growth patterns, new levels of precision 
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can be achieved. By enabling more efficient and 

proactive management strategies, this 

advancement improves food safety and reduces 

the economic impact of food spoilage. Moreover, 

public health and food safety are profoundly 

impacted by these findings. Ensure the safety and 

quality of food supplies with the growing global 

population. Using AI and image processing to 

improve food safety protocols could revolutionize 

the industry, leading to safer food and fewer 

foodborne illnesses. Furthermore, this could 

reduce food waste and improve the reliability of 

food supplies, thereby combating food insecurity. 

Challenges and Limitations 
The development of image processing and 

artificial intelligence-based microbiome 

identification has made significant advances, but 

several challenges and limitations remain. A wide 

range of microorganisms, imaging conditions, and 

sample matrices are required for the successful 

implementation of these techniques. The 

challenge remains, however, in obtaining and 

curating such datasets, particularly for 

microorganisms and imaging scenarios that are 

underrepresented. The development of robust 

and generalizable models for a variety of imaging 

modalities, including brightfield microscopy, 

fluorescence imaging, and hyperspectral imaging, 

would be helpful. Obtaining reliable results across 

different sample types, like food, clinical 

specimens, and environmental samples, is another 

pressing issue. The consistency and reliability of 

images must be maintained across experiments 

through standardized protocols and quality 

control measures. It is important to note that 

depending on how images are acquired, 

preprocessed, and segmented; the results can be 

inconsistent, resulting in poor performance of 

models. Furthermore, determining whether 

Pseudomonas fluorescens and Pseudomonas 

putida are morphologically similar or not. In spite 

of advanced AI techniques, the subtle differences 

in their morphological characteristics continue to 

pose a challenge. Increasing public datasets, 

developing standardized imaging and analysis 

workflows, and refining AI models will be 

required to address these limitations. The analysis 

of search sources from various sources for this 

review is shown in Figure 6. 

 

’  

Figure 6: Analysis of Search Sources 
 

Effectiveness of Identification Methods 
In microbiology, image processing and AI 

techniques are powerful identification methods, 

but they also have limitations. As compared to 

traditional techniques, these methods offer an 

objective and faster approach to identifying 

microorganisms, allowing for automated analysis 

of large sample volumes. By uncovering patterns 

within microbial image data, AI enhances 

diagnostic precision, especially for foodborne 
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pathogens and fungal infections. Some limitations, 

such as the need for comprehensive and well-

annotated training datasets, counterbalance these 

benefits. Differentiating between closely related 

or morphologically similar microorganisms can 

also be challenging when using AI models. 

Moreover, if these issues are not adequately 

addressed, AI models may suffer from bias or 

overfitting, potentially affecting microbial 

identification accuracy and reliability. 

Gaps in Current Research 
In reviewing the literature on microbial 

identification using image processing and AI 

techniques, several key gaps have been identified. 

It is challenging to reproduce and compare 

findings across studies because image acquisition 

and processing protocols are not standardized. 

The issue can be addressed by developing 

standardized guidelines for data collection, 

preprocessing, and analysis. The expansion of 

publicly available microbial image datasets is 

another critical area. To advance research and 

improve AI models, large, diverse, and well-

annotated datasets encompassing a wide range of 

microorganisms would be invaluable. A promising 

opportunity is to integrate various imaging 

techniques, such as fluorescence, Raman 

spectroscopy, with other data sources like 

genomics and biochemistry. In the future, this 

could lead to better microbial identification. 

Identifying closely related microorganisms is 

another pressing need, particularly in contexts 

like food spoilage and human health. In addition, 

these identification systems need to be validated 

and deployed in the real world. Developing 

practical, industry-ready solutions will require 

comprehensive testing in diverse settings, such as 

food processing facilities, clinical laboratories, and 

environmental monitoring programs.  

• Detecting microbial growth with traditional 

methods has high labor intensity and is time 

consuming, making them unsuitable for high-

throughput applications. 

• Due to lack of standardization and insufficient 

datasets covering diverse imaging conditions, 

AI-based methods have not been widely 

adopted. 

• It combines traditional methods with 

advanced microbial detection technologies in 

order to deal with the lack of standardized AI 

models. 
 

Conclusion 
Using bacterial, algae, fungus, and protozoa as 

examples, this review examines the current state 

of image processing and AI-based techniques for 

identifying and classifying microorganisms. 

Advanced methods offer significant advantages 

over traditional methods, including speed, 

objectivity, and potential accuracy, across a range 

of applications from food safety to clinical 

diagnostics.  However, challenges remain, such as 

adapting to multiple imaging modalities, and 

distinguishing closely related microorganisms. 

Although there are hurdles, food safety and 

clinical microbiology could be significantly 

affected. Microbial image databases should be 

expanded, multimodal data incorporated, and 

extensive real-world validation undertaken in the 

future. Even with challenges, an integration of 

these technologies could revolutionize food safety 

practices, enhance clinical diagnostics, and 

improve public health outcomes. It is also 

important to note that there is a need for 

interdisciplinary collaboration between 

microbiologists, technologists, and public health 

experts to develop comprehensive strategies that 

can be widely adopted by the food industry in 

order to achieve these goals. The use of these 

advanced detection methods can be expanded to 

protect the public health, reduce the amount of 

food wasted, and ensure a safer supply of food for 

the world's population by continuing to innovate 

and invest in these advanced detection methods. 

Several emerging technologies will contribute to 

future advances in microbial identification, such 

as single cell analysis; clustered regularly 

interspaced short palindromic repeat (CRISPR) 

based diagnostic methods, and the integration of 

multimodal data. Using single-cell analysis, it is 

possible to characterize individual microbial cells 

in high-resolution and detect rare pathogens, 

identify microbial diversity, and identify 

antibiotic-resistant strains with unprecedented 

specificity. As a result, CRISPR-based diagnostics 

offer rapid, accurate detection of pathogens like 

Escherichia coli and Listeria monocytogenes in 

food safety and public health. Further, AI, 

genomics, and advanced imaging (e.g., Raman 

spectroscopy or hyperspectral imaging) can be 

integrated into the process. In addition to 

unraveling complex patterns, it enhances the 

accuracy of classification in the identification of 
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microorganisms. A number of critical challenges, 

including detecting pathogens in real time, 

combating antibiotic resistance, and improving 

food safety, can be met with these innovations. 

Using such technologies will revolutionize public 

health interventions and ensure safer food 

systems worldwide by delivering unprecedented 

precision and efficiency. 
 

Abbreviations 
AI: Artificial Intelligence, LAB: Lactic Acid 

Bacteria, HAB: Harmful Algal Blooms. 
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