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Abstract 
New WHO research indicates that there are an increasing number of chest-related illnesses. This results in the deaths 
of 17.9 million people annually. It gets harder to identify problems and start therapy at an early age as the population 
grows. However, new developments in technology, such as deep learning and machine learning methods, have sped up 
research in the medical profession. The creation of a machine learning and deep learning model for heart disease 
prediction based on pertinent features is the goal of this study. The chest's X-ray images are kept in the cloud for 
public access in the suggested method. The images retrieved from the cloud via the internet are analyzed for 
prediction using machine learning methods such as K Nearest Neighbor and Random Forest and deep learning 
algorithms such as Convolutional Neural Network and ResNet. Results are further stored in the cloud. Doctors, users, 
and patients can access the saved findings on cloud servers for diagnosis and treatment. We used a benchmark 
dataset from UCI Chest Disease Prediction for this research study. The proposed method classified X-ray images into 
normal and chest disease as cardiomegaly, aortic enlargement, and enlarged cardioment. Results are updated in the 
cloud for doctor diagnosis purposes. From experimental analysis, ResNet produced better results compared to other 
methods. 

Keywords: Chest Diseases, Classification, Convolutional Neural Network, Internet of Things, K-Nearest Neighbor, 
Randon Forest, ResNet. 
 

Introduction
An inexpensive and non-invasive way to examine 

the body's organs is via X-ray radiography (1). X-

rays are frequently employed to identify a variety 

of diseases and anomalies. And are also useful for 

monitoring patients while they are receiving 

therapy (2). Globally, an estimated 3 billion 

images from X-rays are taken annually. This 

figure only includes the more than 150 million of 

the chest X-ray radiographies (CXR) that were 

done in the US. According to the World Health 

Organization (WHO), CXRs are the most widely 

used clinical imaging method in the world (3). 

Grayscale images known as CXRs are often 

created by beaming X-rays onto a human body 

that is positioned in front of a steel plate. Figure 1 

shows examples of CXR images for normal, 

cardiomegaly, enlarged cardio mediastinum, and 

aortic enlargement (4). Despite being essential in 

the identification of thoracic diseases, 

radiologists' visual assessment of CXRs is still 

difficult and prone to inaccuracy. Prior research 

has demonstrated that the longer the need for an 

imaging specialist to analyze CXR images, the 

higher the chance of error. In addition, due to 

concealed diseases and in the signs of skeletons 

and connective tissue, even seasoned radiologists 

were more likely to make a mistaken diagnosis 

(4). According to the WHO, millions of people 

could die from numerous chest illnesses that are 

potentially fatal if they are not appropriately and 

promptly treated (5). Certain respiratory 

illnesses have high death rates, such as TB, which 

assassinated about 1,400,000 individuals yearly; 

pneumonia, which destroys 900,000 youngers 

under those over the age of 5 and is the primary 

cause of death worldwide; and COVID-19, which 

as of November 2022 killed over 6 million people 

worldwide (6). In many parts of the world, there 

is still a severe radiology shortage, mostly due to 

the large number of patients who require 

radiological exams more quickly than new 

radiologists can be trained. The key factors that 
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Figure 1:  A) Normal B) Cardiomegaly, C) Enlarged Cardio Mediastinum, D) Aortic Enlargement (4) 

 

emphasize the need for effective computer-

assisted detection (CAD) systems for the early 

identification of chest diseases are the length of 

hospital waiting lists for diagnosis, the frequent 

incidence of misdiagnosis of CXR pictures, and the 

proliferation of life-threatening diseases (7). 

Because numerous illnesses are similar and a CXR 

is a less clear imaging modality, radiologists may 

not always be able to identify chest ailments on it. 

This results in a high probability of inaccuracy for 

specialists who employ visual techniques to 

identify illnesses. A great deal of research has 

been done to use image-based AI systems to 

address this difficultyA thorough examination of 

the body of research and knowledge about the 

prediction of heart disease using various machine 

learning and deep learning approaches was part 

of the literature study. The latest developments 

and constraints of using machine learning to 

diagnose cardiovascular disease were examined 

in a number of researches. For example, various 

studies   suggested data mining and machine 

learning techniques based on carotid artery 

images, ECG images, and heartbeat segmentation 

and selection processes, among other things. 

Applying machine learning techniques like 

Decision Tree, Naïve Bayes, Random Forest, 

Support Vector Machine, and Logistic Regression 

to the Heart Disease Dataset has been the focus of 

numerous studies, with encouraging classification 

accuracy rates. Furthermore, deep learning 

techniques—in particular, Convolutional Neural 

Networks, or CNN—have become increasingly 

popular for efficiently managing challenging 

assignments and unstructured data (8). By 

identifying hidden patterns in data, making 

forecasts, and enhancing performance based on 

past data, machine learning algorithms are 

essential for accurately predicting cardiac disease. 

These systems help us better predict and 

diagnose cardiac disease, and deep learning—

powered by artificial neural networks—is 

essential for managing intricate calculations on 

massive amounts of data. These algorithms are 

crucial for spotting important characteristics and 

trends in both structured and unstructured data, 

which promotes more effective data processing 

and analysis. The detection and treatment of 

cardiac disease may benefit greatly from the 

application of machine learning and deep learning 

techniques (9).  In order to develop a universal 

and customized approach to healthcare, these 

advanced tools allow the integration of multiple 

data sources, including genetics, imaging data, 

medical records, and lifestyle factors. Machine 

learning's and deep learning iterative nature 

recognizes ongoing learning and adaptation, 

leading to improved diagnostic and predictive 

models over time. This has the potential to 

improve patient outcomes by increasing the 

precision and efficacy of heart disease care (10).  

A common healthcare application is remote 

healthcare monitoring, which aids physicians in 

keeping an eye on patients in remote locations 

who have acute or chronic illnesses, as well as 

hospitalized patients and elderly individuals 

receiving in-home care (11). Many wearable 

gadgets and health monitoring equipment are 

now easily accessible on the market as a result of 

the recent, swift improvements in technology. 

Modern technologies like the Internet of Things, 

machine learning, and artificial intelligence 

greatly simplify the work of doctors. With the 

assistance of modern algorithms, these 

technologies assist in determining the root causes 

of illness and determining how bad it is. The 

study's goal is to offer an ML methods and Deep 

learning models for predicting heart disease with 

integrating IOT devices.  We thus offer a 

Supervised Learning based Internet of Things 



Spoorthi et al.,                                                                                                                                                  Vol 6 ǀ Issue 1  

104  

Chest Disease Prediction using Xray Images. 

Patients can upload chest x-ray images via a 

network connection by using this method. After 

then, the photos are securely stored in cloud 

storage. These photos are retrieved from the 

cloud by an analysis of data component in order 

to forecast diseases. We combine machine 

learning and deep learning algorithms to forecast 

chest disorders.    CNN, ResNet, Random Forest, 

and KNN are the models that are employed in this 

strategy. Results are futher stored in cloud 

Doctors, users, and patients can access the saved 

findings on cloud servers for diagnosis and 

treatment.  

Novelty  
Predicting chest disease from X-rays using the 

Internet of Things (IoT) is an intriguing nexus of 

technology and healthcare that offers a number of 

innovative and significant applications.  Improved 

response time and quicker, more accurate 

decision-making for physicians are two benefits of 

the suggested IOT-based chest illness prediction. 

The suggested approach can be used for 

predictive analytics and ongoing patient 

monitoring. IoT technologies can track patients' 

health parameters continually after a diagnosis of 

a chest condition and notify medical professionals 

of any developments. In order to make sure that 

patients are following treatment guidelines, this 

continuous data stream assists physicians in 

monitoring recovery or problems. Ultimately, the 

combination of IoT with X-ray-based chest illness 

prediction has the potential to transform 

healthcare delivery by increasing diagnostic 

precision, improving patient outcomes, and 

creating more effective healthcare systems. A 

smarter, quicker, and easier-to-use healthcare 

ecosystem is promised by the combination of real-

time data, AI algorithms, and cloud-based 

solutions. The proposed method flow diagram is 

shown in Figure 2.  

The following are the proposed approach's 

primary contributions. 

• Applying the concepts of Supervised Learning 

Techniques (machine learning and deep 

learning) for improved accuracy for chest 

disease; 

• Appropriate preprocessing is carried out to 

eliminate noise; and  

• Increasing the model's efficacy through the 

combination of IOT with the prediction model. 

• The proposed method increasing diagnostic 

precision, improving patient outcomes, and 

creating more effective healthcare systems. 
 

 
Figure 2:  Proposed Method Flow Diagram 
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An altered DenseNet has a framework dubbed 

CheXNet, with 121 layers of convolution to 

identify 14 deviations in the chest to deal with the 

issue of chest overlaps disorders and to stay away 

from the difficulties that radiologists face (13). 

The model was trained and evaluated in this 

experiment using the ChestX-ray14 dataset. Four 

twenty test images were used in the set. CheXNet 

produced remarkable results that exceeded the 

level of radiologists, with a mean AUC (area under 

the curve) of 84.11%. and a 43.50% F1 score. 

Pneumothorax images from the CheXpert dataset 

can be diagnosed using CXR using a deep learning 

model called tCheXNet, which contains 122 deep 

layers (14). With transfer learning, CheXNet 

makes use of the CheXNet model (14). The 

model's classification of pneumothorax yielded an 

AUC of 70.80%. A unique DCNN model is used to 

identify pneumonia (15). For this experiment, a 

dataset of 5,856 CXR pictures was gathered via 

Kaggle. Using rotation, resizing, and flipping as 

data-augmentation strategies, the suggested 

model produced excellent results, with an 83.83% 

accuracy rate (ACC). ChestNet is a two-branch 

pipeline that incorporates the attention approach 

into its design (16). The first part of ChestNet is 

for the extraction of features and classification of 

14 chest ailments, with a ResNet152 serving as 

the foundation. An attention mechanism is used in 

the second branch to associate class labels with 

the location of the disease. Chest-Net performed 

well, obtaining an average AUC of 78.10% when 

trained and evaluated using the ChestX-ray14 

data. A multi-label classification technique based 

on a DL architecture for the detection of 14 

thoracic abnormalities is present in the paper 

(17). The CheXpert dataset showed excellent 

performance from the suggested model. For the 

identification of five lung disorders, a mean AUC 

of 94.00% was attained (18). 12 chest anomalies 

from two publicly accessible datasets (PLCO and 

ChestX-Ray14) were classified using a location-

aware model using CXR pictures (19). The 

suggested DenseNet121 model outperformed four 

other models—ResNet50, GoogleNet, VGG16, and 

AlexNet—when assessed on the identical set of 

data, with an average AUC of 87.40%. A method 

for classifying CXR images from the ChestXray14 

dataset was presented using EfficientNet-V2M 

and transfer learning (20). Three classes were 

created by the model from the images: normal, 

pneumonia, and pneumothorax. Having an 

82.15% overall accuracy, 91.65% specificity, and 

81.40% sensitivity, EfficientNet-V2M 

demonstrated its effectiveness. Four classes in the 

dataset—normal, tuberculosis, pneumothorax, 

and pneumonia—were used to test this model. It 

achieved an 82.20% mean ACC. Different DCNN 

models were used to categorize CXR pictures into 

six classes (21). Xception with the Adam 

optimizer was the model that performed the best. 

With an average AUC of 95.84%, it outperformed 

other DCNN models. When tested for the 

identification of 14 anomalies from the CheXpert 

dataset, this model performed well. It obtained an 

AUC of 94.90% overall. A DCNN model that has 

201 deep layers and 20 million parameters is 

called DenseNet201 (22). It was a solution to deep 

neural networks' declining accuracy as a result of 

the vanishing gradient. This approach uses dense 

connections through dense blocks to connect all 

levels (each one to every other layer) in a feed-

forward fashion. When tested on the ImageNet 

dataset, DenseNet models performed well. 
 

Methodology 
In the proposed method images of chest taken 

from xray machines are stored in the cloud via 

internet. Images from the cloud are processed by 

the machine learning and deep learning models 

and results of processing stored again in cloud for 

access for diagnosis by the doctor/patient. We 

suggested a Data Pre-processing architecture in 

this part. We employ machine learning and deep 

learning models for the chest disease diagnosis 

model because they excel at identifying intricate 

patterns in picture data and are thus well-suited 

for the task. But careful preprocessing is 

necessary to fully utilize raw photos and realize 

their full potential. Here is a detailed examination 

of some crucial techniques: 

Image Augmentation 
Lack of data is a common issue in deep learning. 

By adding new, varied variations of already-

existing images to the dataset, augmentation 

improves model generalizability and reduces 

overfitting. On leaves, common techniques include 

rotation, flipping, scaling, cropping, color jittering, 

noise addition, and elastic deformations (23).  

Argumentation such as enhanced image, height, 

width shift, rotation, shearing, and horizontal flips 

are applied for the suggested method. 
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Data Normalization  
Deep learning algorithms often presume 

standardized input values. Normalization is the 

process of normalizing intensity of pixels to a 

standard range which boosts training stability 

(24). The images in the dataset are standardized 

before being processed further. 

Color Space Conversion 
Red Green Bule (RGB) images can be converted to 

various color spaces in order to highlight unique 

disease-specific features. HSV emphasizes hue and 

saturation, making it easier to distinguish 

diseases based solely on color. A color perception 

tool called CIELAB (25) was utilized to help us 

discover minor symptoms. 

Noise Reduction and Filtering 
During capture or transmission, noise can bring 

confusion into Deep Learning models. Methods 

such as median filtering, bilateral filtering, and 

Gaussian filtering smoothen images while 

maintaining edges that are important for 

diagnosing diseases (26). To eliminate noise, we 

used Gaussian filtering in the suggested 

technique. In the proposed method we have 

applied 5   networks models and compared their 

results by carefully selecting and applying these 

data preprocessing techniques, we can prepare 

our image data for optimal performance in deep 

learning-based chest disease from Xrays detection 

models. Experimentation and evaluation are key 

to finding the best approach for our specific 

needs. In this section, we proposed five transfer 

learning-based Deep learning models.  

CNN: Pattern recognition in images is the main 

application for deep learning neural network 

topologies like convolutional networks (27). CNN 

is a prime example of an artificial neural network. 

An input, hidden, and output layer make up a 

typical Artificial Neural Network (ANN). These 

layers of a CNN are called convolutional, non-

linearity, pooling, and fully connected layers. 

CNNs handle a lot of jobs that need image-driven 

pattern recognition.  Advantages CNN have the 

ability to automatically identify and assess 

relevant features of images. The networks' ability 

to automatically adapt to the spatial arrangement 

of elements that the subject learns and extracts 

pertinent properties from the images is a crucial 

element of the technique. Dynamically translation 

invariance the capacity to detect translation 

invariance a method that helps verifies the 

existence of diseases unconnected to leaf 

orientation. 

                            

 
Figure 3: The Architecture of CNN (27) 

 

CNN's input, convolution and pooling, flatten, and 

output layers are depicted in Figure 3 (27). First, 

we need to choose the architecture for our model. 

Three channels and a 256*256 format are used for 

our data input. Five is the total number of output 

classes that we have set, as we have five different 

classes in total. Our model is composed of 

convolutional and pooling layers initially, a 3 × 3 

convolutional layer of 32 filters is present. A 2 × 2 

max pooling layer follows this. By highlighting the 

smaller pieces, this decreases the size. Two copies 

of the structure are made in order to include as 

many 2 × 2 pooling layers as feasible. Finally, to 

further enhance our model, convolutional layers 

with 64 and 128 filters, respectively. The resulting 

feature map is then given a flattening layer to 
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make it into a flat vector. Next, a 128-neuron 

hidden (dense) layer is added. This is a thick, 

secret layer. This layer enhances the learnt 

qualities and helps in generalization. Finally, the 

output layer uses four neurons to calculate the 

chances between classes using the softmax 

activation function. We need to determine the 

optimal metrics and function in order to train our 

model. In this study, we use the Rectified Adam 

optimization technique. This method dynamically 

modifies the learning rate to enable the more 

efficient utilization of gradients. Furthermore, 

categorical cross-entropy is used as the loss of 

classification because it is commonly used in 

multiclass classification problems. 

ResNet: ResNet uses skip links, informational 

"magic highways," in the suggested technique to 

compensate for vanishing gradients. Unlike 

ordinary roadways (convolutional layers) where 

information can be lost, these shortcuts ensure 

that crucial visual cues concerning healthy and 

diseased plant tissues reach the diagnosis station 

(final layers). Think about the examination of leaf 

photos. Regular models might struggle to learn 

deeply nested, subtle color changes, but ResNet's 

shortcuts enable it to learn complex illness 

patterns while preserving crucial baseline 

knowledge. ResNet is hence a useful technique for 

precisely and early detection of plant diseases, 

potentially saving harvests and livelihoods. We 

have restricted the batch size to 32 and the output 

classes to 5 in order to accomplish this (the total 

number of (the total count of people who meet the 

requirements). We allowed for some flexibility in 

figuring out the final number of input channels, 

which will be established by the different tests we 

conducted. The input image, intermediate layer, 

and output layers of the ResNet architecture are 

shown in Figure 4 (28). The same architecture 

was employed in the suggested method. 
 

 
Figure 4: The Architecture of ResNet (28) 

 

Advantages: It was one of the models that initially 

showed how competitive deep learning is for 

classifying images. Its depth allows it to capture 

the deeper patterns associated with illnesses of 

the leaves. It solves the vanishing gradient 

problem and allows for faster training by utilizing 

the ReLU activation function. It is incorporated to 

optimize GPU processing for quicker training.  

Random Forest: A popular supervised machine 

learning algorithm for classification and 

regression issues is called random forest (29). 

Using various samples, it constructs decision trees 

and uses the majority vote for categorization and 

the average vote for regression. The ability of the 

Random Forest Algorithm to handle data sets with 

continuous variables—as in regression—and 

categorical variables—as in classification—is one 

of its most crucial properties (30). It produces 

superior outcomes for categorization issues. 

Figure 5 displays the random forest architecture 

diagram, which includes input, output-based 

majority voting, and trees constructed for classes 

A, B, and C. 

The random forest algorithm's steps are as 

follows: 

Step 1: From the data collection containing k 
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records, n random records are selected using 

Random Forest. 

Step 2: For every sample, a separate decision tree 

is built. 

Step 3: An output will be produced by each 

decision tree. 

Step 4: The final product is evaluated using either 

regression or classification averaging, or majority 

voting. 

 

 
Figure 5: Random Forest (29) 

     

K-Nearest Neighbour: An algorithm for 

supervised machine learning is K-Nearest 

Neighbor.   It classifies newly iscovered cases and 

data as most likely existing cases based on 

comparison with known examples. It is mostly 

used for classification and regression. It works 

well with small datasets and is memory-based. 

even if the number of neighbors was used to 

gauge its performance. Moreover, the training 

dataset needs to be provided appropriately 

because the KNN is sensitive to noisy input (31). 

The Euclidean distance formula is typically used 

to get the closest k. Eq[1] illustrates the Euclidean 

distance formula in the KNN method. 

                            [1] 

In the given example data, y = amount of data, x = 

value of the x variable, y = value of the y variable, 

and d = Euclidean distance. 

Parameter setting 
The parameter setting and configuration 

architecture of KNN, Random Forest, CNN and 

ResNet are discussed below. 

KNN 

In order to begin the analysis, we used overall K-

Nearest Neighbors (KNN) algorithm using 

different values for "k," which stands for the 

number of nearest neighbors taken into account 

while making predictions. We used cross-

validation to calculate scores for each "k" value 

and finally determined that "k = 7" produced the 

best mean cross-validation score. This result 

emphasizes how promising it is to configure KNN 

with "k = 7." 

Random Forest 

We changed the Random Forest model’s tree 

count (n_estimators) to 200 by carrying out a 

thorough hyperparameter tweaking procedure. 

CNN 

Three layers make up the model architecture for 

CNN: an output layer using the sigmoid activation 

function, a hidden layer with 64 units using ReLU 

activation, and an initial layer with 128 units 

using the ReLU activation function. The Adam 

optimizer was used in conjunction with binary 

cross-entropy loss during model compilation, and 

accuracy was used as the evaluation metric.  

Early halting was incorporated as a preventative 

step into the training procedure to lessen the 

possibility of overfitting. This entailed returning 

the model's weights to their optimal setting and 

tracking the validation loss for a maximum of ten 

epochs. Utilizing a batch size of 64, the training 

was carried out utilizing scaled training data for a 

maximum of 100 epochs. 
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Configuration of CNN 

Convolutional Layer 1:  32   3x3 filters, stride 1, 

and "same" padding, ReLU Max Pooling Layer 

Activation: Size of pool: 2 x 2 stride 2. 

Convolutional Layer 2: 64    3x3 filters with 

stride 1 and "same" padding, ReLU Max Pooling 

Layer Activation: Size of pool: 2 x 2 stride 2. 

Fully Connected Layer: ReLU activation, 128 

neurons 

Layer of Output: One neuron with sigmoid 

activity for binary classification. The number of 

classes using softmax activation for multi-class 

classification 

ResNet 

The parameter setting of ResNet is discussed 

below.  Prior to being augmented (original, 

rotated, and shifted copies of images) with a batch 

size of 32, the initial images used for training 

were downsized to 128×128×3.  The ResNet 

model was then optimized using the random 

search technique, with a maximum of 30 trials 

and 24 epochs. The remaining parameters were 

then optimized during the training of the ResNet 

model:"Version of ResNet," which specifies the 

ResNet version to be used for the model.  "Batch 

size," which denotes the quantity of photos 

handled concurrently. Convergence will be   

sluggish if the mini-batch size is too small, and it 

will be slower if it is too big.  The third 

convolutional layer’s depth is denoted by 

"Conv3_depth."   The fourth convolutional layer’s 

depth is denoted by "Conv4_depth." One crucial 

hyperparameter that controls the jump's 

amplitude in each iteration is "learning rate." It 

will take a long time to converge if the learning 

rate is too low, and it may diverge if it is too high. 

The completely connected layer makes use of the 

"optimizer.” Table 1 displays the range of 

hyperparameter of ResNet with version, batch 

size, conv3_depth, conv3_depth, and pooling, 

learning rate and optimizer values. 

 

Table 1: Range of ResNet Trained Hyper parameters   

Hyper parameter Range 

Version [’v1’] 

Batch Size [32] 

conv3_depth [4, 8] 

conv4_depth [ 36] 

Pooling [’avg’] 

Learning rate [ 0.001] 

Optimizer [’adam’] 
 

Results 
We utilized the VinDr-CXR (4) dataset which 

includes the precise position of findings and the 

classification of various thoracic disorders. It 

consists of 18,000 CXR images in total. VinDr-CXR 

was gathered from Hanoi Medical University 

Hospital and H108 Hospital. A team of skilled 

radiologists diagnoses every dataset images. As a 

result, a single radiology specialist or several may 

diagnose two distinct diseases from the same 

imaging. We only keep CXR images from the 

VinDr-CXR dataset if a minimum of three 

radiologists concur that the image shows the 

same disease; otherwise, the image is removed. 

For example, if three or more radiologists concur 

that the image shows single disease, the image in 

question is added to the proposed dataset; if not, 

it is going to be left out. For the purpose of 

classifying diseases according to afflicted organs, 

the images in our dataset are divided into four 

groups: normal, aortic enlargement, enlarged 

cardio mediastinum, and cardiomegaly. For the 

classification of specific diseases, the images are 

divided into 2 classes (10,606 normal cases, and 

7,162 chest disease). An overview of the 

distribution of CXR pictures in our combined 

dataset is provided in Figure 6. 



Spoorthi et al.,                                                                                                                                                  Vol 6 ǀ Issue 1  

110  

 
Figure 6: CXR Image Samples from our Combined Dataset: A) Normal, B) Cardiomegaly, C) Enlarged 

cardiomediastinum, D)   Enlarged aorta,  E)   Aatelectasis, F)   Pleural effusion, G) Pneumothorax, and H) 

Pulmonary fibrosis (4) 
 

The resolution of every image was set to 256 by 

256 pixels. 10% of the dataset was set aside for 

testing throughout the training phase, with the 

remaining 90% being used to train the deep 

learning model. Furthermore, a 10% validation 

split was applied to the training dataset during 

validation. To provide a strong model evaluation, 

stratified k-fold cross-validation with k=5 was 

used.  The following indicators were used to 

assess the effectiveness of the suggested chest 

disease detection approach. 

Accuracy: This measure assesses the overall 

accuracy of the model's predictions. It can be 

expressed as the proportion of correctly 

categorized observations to total observations. 

The formula to compute it is given by Eq [2]. 

          𝐴𝑐𝑐 =
𝑇𝑃𝑜𝑠+𝑇𝑁𝑒𝑔

𝑇𝑃𝑜𝑠+𝑇𝑁𝑒𝑔+𝐹𝑃𝑜𝑠+𝐹𝑁𝑒𝑔
                    [2] 

Whereas T𝑃𝑜𝑠 , For instance, a t In the setting of 

chest disease detection, for example, a true 

positive occurs then the model correctly identifies 

an infected image as such. 𝑇𝑁𝑒𝑔, When a healthy 

image is correctly classified as healthy by the 

model, it is an example of a true negative in the 

context of chest disease detection.  𝐹𝑃𝑜𝑠, A good 

example of a false positive in chest disease 

diagnosis is when the model incorrectly labels a 

healthy xray image as diseased (Type I error). 

𝐹𝑁𝑒𝑔, In chest disease detection, a Type II error 

can lead to the model incorrectly classifying a 

diseased    as healthy. This is an example of a false 

negative. 

Specificity 

The accuracy of the negative rate, or specificity: 

Specificity measures the extent to which the 

algorithm can detect healthy plants and 

distinguish between all instances of true, healthy 

plant cases. The equation used to compute it is 

provided by Eq [3]. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁𝑒𝑔 

𝑇𝑁𝑒𝑔+𝐹𝑃𝑜𝑠
                           [3] 

Precision 

The percentage of all images that the system 

correctly anticipated to be disease-affected 

images out of all images that were favorably 

predicted is known as precision. The calculation 

formula is provided by Eq [4]. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃𝑜𝑠

𝑇𝑃𝑜𝑠+𝐹𝑃𝑜𝑠
                                [4] 

Sensitivity or Recall 

The percentage of accurately predicted sick days 

compared to the total number of positive test case 

occurrences is known as sensitivity. The formula 

to compute it is given in Eq [5]. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃𝑜𝑠

𝑇𝑃𝑜𝑠+𝐹𝑁𝑒𝑔
                            [5] 

F1-score 

The harmonic average of the two measurements, 

or the so-called F1-scoring system, can be used to 

balance recall and accuracy. The calculation 

formula is provided by Eq [6]. 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
                   [6] 

We may evaluate the efficacy and performance of 
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the deep learning model in reliably identifying 

xray images diseases and differentiating them 

from healthy images and anomalies by using these 

parameters. 

Results without Image Augmentation 

The proposed method used metric accuracy for 

analysis of the experimental results without 

image argumentation techniques. Following Table 

2 shows the result of the proposed method 

without argumentation, KNN, Random Forest, 

CNN and ResNet. 

 

Table 2: The Result of the Proposed Method without Argumentation 

Method                                               Accuracy  

 Normal Aortic 

enlargement  

 Enlarged Cardio 

Mediastinum 

 Cardiomegaly 

 KNN 0.788 0.809 0.783 0.793 

Random Forest       0.807 0.827 0.805 0.810 

CNN  0.825 0.843 0.822 0.824 

ResNet 0.839 0.858 0.839 0.838 
 

Augmentation 

In this experiment, image analysis had to be 

enhanced in order to determine how the amount 

of data impacted the generated model's accuracy. 

In order to conduct experiments, the performance 

of the model has been compared to and without 

augmentation. Constant hyperparameters were 

used during the testing process. The hidden units 

show the total amount of nodes required for the 

hidden layer. The number of input and output 

nodes is centered around this unit. Adam is an 

optimization technique derived on the lately 

widely used deep learning technique known as 

stochastic gradient descent. The CNN algorithm, a 

transfer-learning method, was used in this 

investigation. To minimize the length of the 

training process, a low epoch value was chosen. 

30,000 images were obtained with image 

augmentation, compared to around 17768 

without image augmentation. Models lacking 

image augmentation scored lower and were 

consequently less adept at identifying visual 

patterns since there was less variance in the 

training data. 
 

 

 
Figure 7: Augmented Results 
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Figure 7 displays the augmented results with 

scaling with the x and y axes, reflections with 

different axes, and rotation shear with different 

angles. The key parameters of Image 

Argumentation for the suggested approaches are 

displayed in Table 3.  
 

Table 3:  Hyper parameters of Image Argumentation 

                   Hyperparameter 

Hidden units                              256 

Optimizer                                Adams 

Epoch                                         100 

Batch Size                                  64 
 

 

Table 4: Comparison of Different Models for CRX   Normal Images  

Model         Accuracy (%) Sensitivity (%) Specificity (%)  Precision (%)  F1 Score (%) 

 KNN  89.6      86.1                  93.2         92.5       89.2 

Random Forest        91.8      89.6                  94.1         93.7       91.6 

CNN   93.5      92.2                  94.8         94.5       92.8 

ResNet  95.7     92.7                  96.7         96.5       94.6 
 

The categorization results for healthy images are 

displayed in Table 4, along with a comparison to 

other models. It can be concluded that, in 

comparison to other models, ResNet offers 

superior accuracy. Table 5 presents the results of 

the aortic expansion of the chest and compares 

them to other models. It can be concluded that, in 

comparison to other models, ResNet offers 

superior accuracy. 

 

Table 5: Comparison of Different Models for Aortic enlargement 

Model         Accuracy (%) Sensitivity (%)  Specificity (%) Precision (%)  F1 Score (%) 

 KNN  91.9      94.8                  92.5         92.7       93.7 

Random 

Forest       

 93.5      95.4                  93.7         93.9       94.7 

CNN   94.7      96.5                  95.1         95.2      95.9 

ResNet  96.2      97.6                  96.9         96.9       97.1 
 

Table 6: Comparison of Different Models for Enlarged Cardio Mediastinum 

Model         Accuracy (%)  Sensitivity (%)  Specificity (%) Precision (%) F1 Score (%) 

KNN  89.9      85.2                  93.8         93.0       88.8 

Random 

Forest       

 92.4      91.2                  94.6         94.4       92.6 

CNN   94.1      92.8                  95.4         95.2       93.9 

ResNet  95.5      94.1                  96.6         96.4       95.2 
 

Table 7: Comparison of Different Models for Cardiomegaly 

Model         Accuracy (%) Sensitivity (%) Specificity (%)  Precision (%)  F1 Score (%) 

 KNN  93.0      94.6                  92.8         93.0       93.7 

Random 

Forest       

 93.6      95.8                  93.9         95.1       94.9 

CNN   94.8      96.7                  95.3         94.3       95.9 

ResNet  96.2      97.8                  96.8         96.7       96.8 
 

Table 6 presents the classification results for 

enlarged cardiac mediastinum and compares 

them with other models. The categorization 

findings for the cardiomegaly are displayed in 

Table 7, along with the comparison with different 

models. The experimental research revealed that 

the ResNet outperformed the other techniques in 

terms of results. The ResNet model's superior 

capacity to extract higher-level characteristics 

from images makes it better. Higher precision 

results from this. Non-linearity increased along 

with the number of layers with fewer kernels, a 

tendency that is favorable for deep learning. 

However, one disadvantage of ResNet is its large 
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number of parameters and computing demands. 

Table 8 shows the comparisons of the proposed 

with other existing method. From the result, 

ResNet produced better results. 
 

Table 8:  A comparison between the Suggested Approach and Previous Research 

 Paper   Proposed Methods  Accuracy 

 (12) Efficient Net 89.5% 

 (9) CNN (8 layers: 2 fully connected, 3 max-pooling, 3 

convolutional) 

78%-100% (average 

93.2%) 

 (10) Mobile net (CNN variant) 94% 

 proposed ResNet 95.7% 
 

Discussion 
KNN works well with small, straightforward 

datasets when interpretability is crucial, but it 

might not scale well with bigger data sets. The 

accuracy produced by the suggested method is 

lower than that of other methods because of the 

amount of the dataset. Random Forest can 

effectively manage bigger datasets and works well 

with structured/tabular data, but it is less 

interpretable.  Computationally demanding 

because, particularly with big forests or datasets, 

prediction and training processes can be sluggish. 

Memory Usage: To store every tree in the 

ensemble, additional memory is needed. While RF 

outperformed KNN in terms of results, CNN and 

Resnet outperformed it in terms of classification 

accuracy. When it comes to tasks that call for 

hierarchical or spatial feature learning, they 

frequently perform worse than CNNs. When 

dealing with complicated, high-dimensional, 

unstructured data—particularly images or 

sequences—CNNs typically perform better than 

Random Forests. Despite their need for massive 

datasets and processing capacity, CNNs are the 

preferred models for image-related tasks since 

they automatically extract features and patterns 

from data. However, CNNs usually have trouble 

going deeper in the suggested approach since 

extra layers can produce problems like vanishing 

or expanding gradients. This hinders the effective 

learning of very deep networks. Consequently, the 

results were less accurate than those of ResNet. 

ResNet is a sophisticated CNN version that 

enables the efficient training of very deep 

networks, producing state-of-the-art outcomes in 

vision challenges. ResNet is a substantial 

advancement in deep model training, even though 

conventional CNNs are fundamental and useful for 

many tasks. Key issues like disappearing 

gradients are addressed by its architecture, which 

enables more precise and reliable models, 

especially   for intricate jobs that call for deeper 

networks. Because of this, ResNet frequently 

performs better than conventional CNNs in terms 

of accuracy and training stability. 

Limitations   
The use of IoT (Internet of Things) for X-ray 

image-based chest illness prediction can present a 

number of difficulties because of biases in the 

dataset and practical implementation problems. 

We'll go over some of the main issues in these 

areas below: 

Class Imbalance and Dataset Bias: X-ray 

datasets frequently experience class imbalance. 

Because of this imbalance, the model may be 

biased toward predicting the majority class 

(healthy individuals), which might result in poor 

model performance for rare diseases.  

Age and Gender Bias: Images from particular age 

groups or genders may be overrepresented in 

datasets. The model's ability to generalize to 

underrepresented groups may be impacted by the 

bias this introduces. Geographic and Demographic 

Bias: Images of medical conditions might differ 

significantly between institutions or various 

locations. If the majority of the photos in a dataset 

are from a single region, the model may not fit 

patients from other regions effectively. Bias in 

Quality and Resolution Models that have been 

trained on high-quality photos may not function 

effectively when exposed to low-quality 

photographs from less sophisticated real-world 

equipment. 

Incomplete or Missing Data: Incomplete or 

missing data is a common feature of real-world 

datasets, and improper handling of this data can 

result in biases. 

Challenges in Real-World Implementation 

Data Collection and Labeling: Obtaining a large 

and diverse dataset of X-ray images with proper 

labeling   is a significant challenge. Data labeling 

typically requires expert radiologists, which can 
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be time-consuming and expensive. Additionally, 

mislabeling can occur, which negatively impacts 

the model’s accuracy. As sharing and accessing 

medical data across different hospitals, research 

institutions, or IoT devices requires addressing 

legal, privacy, and security concerns. This can 

slow down the development of IoT-based systems 

for chest disease prediction.     A model that works 

well on a controlled dataset may struggle when 

deployed in real-world settings due to variability 

in X-ray images   Transfer learning techniques can 

help but may not always fully address these 

issues.     Model Interpretability is another 

challenge to be faced. Many deep learning models 

used in medical applications are frequently 

regarded as "black boxes," which makes it 

challenging for medical professionals to 

understand the outcomes.  To enable real-time 

predictions, IoT systems frequently include 

sensors, cloud services, and edge devices. 

However, a major engineering problem is making 

sure the system functions effectively, scales 

adequately, and delivers dependable results in 

real-time.   Although there is a lot of promise in 

integrating IoT and X-ray pictures to forecast 

chest ailments, there are a number of issues that 

need to be resolved to make sure the technology 

is dependable, moral, and scalable in practical 

settings. To make these systems a useful tool in 

clinical settings, several significant challenges 

must be addressed, including dataset bias, the 

complexity of real-world situations, regulatory 

barriers, and problems with model dependability 

and interpretability. 
 

Conclusion 

In order to forecast various chest diseases from 

xrays, we used both deep learning models and 

Machine learning in this work. Among the deep 

learning models that are employed are CNN, and 

ResNet. Machine learning model used are KNN 

and random forest. Chest disease prediction is 

now possible with speed and accuracy thanks to 

the combination of deep learning and Machine 

learning With an accuracy of 95.7% for normal 

chest images, 96.2% for Aortic enlargement, 95.3 

percent for Enlarged Cardio Mediastinum, 96.2% 

for Cardiomegaly, ResNet outperformed all the 

other mode. 
 

Abbreviations 
IoT: Internet of Things, CNN: Convolutional Neural 

Networks, ResNet: Residual Network, KNK: K 

Nearest Neighbor, DL:  Deep Learning, CRX: Chest 

Xray. 
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