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Abstract 
In habitats that are encroaching on humans, human-wildlife conflict is an increasing global challenge. There is a 
significant risk of human injury and retaliatory action being taken if humans encounter dangerous animals. This work 
presents a novel approach to automated detection and classification of dangerous animals using audio signals, with a 
focus on model interpretability. This work introduces the Convolutional Interconnected Layer Neural Network 
(CILNN), a deep learning architecture designed to effectively process and classify animal vocalizations. Our method 
leverages a comprehensive set of audio features, including Mel-frequency cepstral coefficients (MFCCs) and spectral 
characteristics, optimized through SHAP-based feature selection. The CILNN incorporates interconnected layers and 
attention mechanisms to enhance feature extraction and model performance. It evaluates proposed approach on a 
diverse dataset of vocalizations from five dangerous animal species: bears, bison, cheetahs, elephants, and wild boars. 
Experimental results demonstrate that the CILNN outperforms traditional machine learning models such as Random 
Forests and Decision Trees in classification accuracy and robustness. Crucially, it employs Explainable AI (XAI) 
techniques, including SHAP values and decision tree visualizations, to interpret the decision-making processes of both 
our CILNN (90.6% accuracy) and other models. This interpretability analysis provides insights into feature 
importance and model behavior, enhancing trust and understanding in the classification process. Our work 
contributes to wildlife monitoring and human-wildlife conflict mitigation by offering an efficient, accurate, and 
interpretable method for acoustic-based animal detection. 
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Introduction 
A growing global challenge is human-wildlife 

conflict, especially in habitats that are 

encroaching on humans. Human encounters with 

dangerous animals pose significant risks to 

human safety and can also lead to retaliatory 

actions that threaten wildlife conservation.  Natur

e uses vocalizations to communicate, mating calls, 

to defend territory, and to warn. Voices can 

convey a wealth of information about an animal's 

state, intentions, and environment. Through 

acoustic monitoring, animal populations, 

behaviors, and movements can be studied and 

tracked without direct human intervention. 

Bioacoustics analyzes animal sounds based on 

biology and acoustics. The methods of modern 

acoustic monitoring typically involve recording 

animal vocalizations using specialized 

microphones. Analyzing these recordings using 

machine learning algorithms and signal 

processing techniques allows species to be 

identified, individuals counted, and patterns 

detected.  Humans have used bioacoustics for 

situational awareness of dangerous animals since 

ancient times. During the early 20th century, 

bioacoustics emerged as a scientific field from 

basic observations by naturalists. Practical 

applications in conservation and safety replaced 

purely scientific study. In the late 20th and early 

21st centuries, digital technology, machine 

learning, and artificial intelligence led to 

automated monitoring systems. Today's systems 

are highly effective for reducing wildlife conflict, 

preventing poaching, and enhancing tourism 

safety. Human-wildlife conflicts are intensifying 

because of habitat loss, population growth, and 

land use changes. Therefore, species that once 

lived in undisturbed habitats now navigate 

landscapes transformed by humans. Both wildlife
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conservation and human safety depend on 

understanding and addressing these conflicts. 

Conflicts between humans and wildlife pose a 

significant threat to communities and wildlife. 

Conflicts between humans and wildlife are 

becoming more frequent as human populations 

expand and encroach upon natural habitats. 

Figure 1shows the Time line of Animal Acoustic 

Detection. These conflicts can often be mitigated 

using physical barriers or human patrols, but 

these methods tend to be costly, labor-intensive, 

and ineffective. A scalable solution that provides 

early warnings of potential dangerous animal 

presence, thereby reducing the likelihood of 

harmful encounters, is urgently needed. There is a 

pressing need for innovative solutions to 

proactively prevent or mitigate conflict situations. 

Automated early warning systems stand out as a 

promising solution, providing timely alerts to 

communities and authorities, reducing the risk of 

encounters with potentially dangerous animals. 

Using artificial intelligence, such as deep learning 

algorithms, enables the system to recognize 

specific animal vocalizations and identify 

potentially dangerous situations. Automated 

methods ensure a faster and more accurate 

response to emerging conflict scenarios, allowing 

for timely intervention and risk mitigation. 
 

 
Figure 1: Time line of Animal Acoustic Detection 

 

Artificial intelligence and audio signal processing 

advances enable machine listening techniques to 

address this challenge. By identifying acoustic 

signatures, these techniques provide a cost-

effective, continuous monitoring solution that is 

noninvasive and noninvasive. Real-world 

applications of these techniques face several 

challenges: 

● Complexity of natural soundscapes: As 

wildlife vocalizations occur in a cacophony of 

environmental sounds, robust algorithms are 

needed to isolate and identify species. 

● Variability in animal vocalizations: Variations 

within species caused by factors with precise, 

adaptable classification models. 

● Limited labeled data:  It is challenging to 

obtain large, accurately labelled datasets of 

dangerous animal vocalizations, especially for 

rare or elusive species. 

● Interpretability of AI models:  The decision-

making process of these models must be 

transparent and explainable to allow them to 

be deployed practically and gain user trust. 

 An automated acoustic detection and 

classification of dangerous animals is presented in 

this study to overcome these challenges. Our key 

contributions are: 

● Development of the Convolutional 

Interconnected Layer Neural Network 

(CILNN):  New deep learning architecture for 

processing and classifying animal 

vocalizations. 

● Comprehensive feature engineering:  In our 

approach, SHAP-based feature selection is 

used to select Mel-frequency cepstral 
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coefficients (MFCCs) and spectral 

characteristics from audio signals. 

● Integration of Explainable AI (XAI) 

techniques:  By incorporating SHAP values 

and decision tree visualizations, it enhances 

the transparency of the classification process 

using both our CILNNs and traditional 

machine learning approaches. 

● Comparative analysis:  The CILNN is 

compared to traditional machine learning 

models (Random Forests and Decision Trees) 

on a diverse dataset of vocalizations from five 

dangerous animal species: bears, bison, 

cheetahs, elephants, and wild boars. 

● Real-world applicability:  Our system in 

wildlife monitoring and human-wildlife 

conflict mitigation is discussed in terms of 

potential deployment scenarios and 

challenges. 

Considering these aspects will help develop 

practical, interpretable tools for monitoring and 

management of wildlife by advancing the field of 

bioacoustics. Through non-invasive monitoring 

techniques, the proposed approach could 

significantly enhance human safety and support 

conservation efforts in wildlife-rich areas. The 

field of bioacoustics and AI has significantly 

transformed wildlife monitoring. Animal 

vocalizations can now be precisely classified using 

sophisticated DL models, such as CILNN. The use 

of Explainable AI (XAI) techniques has increased 

model transparency. Enhanced feature extraction 

techniques and attention mechanisms allow 

models to adapt to species-specific variability. 

Using these innovations, humans and wildlife can 

coexist efficiently and non-invasively. The 

research work combined sound analysis with 

linear prediction coding and artificial neural 

networks to detect stress vocalizations in noisy 

pig units with few recognition errors (<5%) (1). 

STREMODO (Stress monitor and documentation 

unit) is insensitive to noise, human speech, and 

pig vocalizations other than screams. Various 

farming environments can use it routinely as an 

objective, non-invasive measure of acute stress. A 

study proposed that African elephant 

vocalizations reflect emotional intensity (2). 

Researchers examined four adult female rumbles 

in different social contexts at Disney's Animal 

Kingdom to determine whether they varied 

between negative (dominance interactions) and 

neutral (minimal social activity) situations. It 

appears that negative social contexts elicit higher 

intensity vocalizations with specific acoustic 

features, while positive contexts show similar but 

less pronounced effects. The review work 

discusses current trends in sound analysis. This is 

followed by a description of three important farm 

livestock species: chickens (Gallus gallus 

domesticus), pigs (Sus scrofa domesticus), and 

cattle (Bos taurus) (3). This method has the 

potential for developing automated methods for 

large-scale farming to monitor animal welfare. 

The novel study was to investigate whether wild 

boar calls (i.e., grunts, screams, or squeals) change 

depending on their emotional state. Positive and 

negative situations resulted in different types of 

calls (4). As emotions changed, their acoustic 

structure changed as well. Generally, positive calls 

are shorter and lower frequency than negative 

calls. Thus, wild boars seem to express their 

emotions through their vocalizations. Various 

attempts have been made to decipher the 

meaning of farm animal vocalizations in recent 

years (5). A review of the current state-of-the-art 

is given in this discipline focusing on important 

farm animal species (pigs, cattle, and poultry) as 

well as current problems and future 

developments. Modern sound analysis techniques 

can discriminate, analyze, and classify specific 

vocalizations. AudioMoth is a low-cost, small, full-

spectrum alternative described by the work (6). 

The device consists of a printed circuit board, a 

microcontroller, and a microphone. By combining 

its small size and a simple mechanism, this device 

can be retrofitted into many low-cost ruggedized 

enclosures for deployment in remote locations; 1. 

Long-term monitoring with low-power operation; 

2. Modular expansion with easy access general 

purpose input and output pins; and acoustic 

detection with onboard processing power. An 

audio processing workflow combining automated 

detection and human review was described (7). 

By using this workflow, it reduces human effort 

by more than 99%. The Shiny package provides a 

user-friendly way to run the neural network 

through RStudio, creating a portable and portable 

workflow for field biologists. This work focused 

animals can identify their species or breed by the 

sound they produce during vocalizations, even if 

the sound is similar to unaided human ears (8). In 

order to test this hypothesis, three artificial 
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neural networks (ANNs) were developed to 

automatically identify 13 bird species, eight dog 

breeds, and 11 frog species using bioacoustics 

properties. By tenfold cross-validation, the 

converted values of the vocalizations and breed or 

species identifications were used to train the 

ANNs. The respective ANNs correctly identify 

71.43% of birds, 94.44% of dogs, and 90.91% of 

frogs. The recent work presents an end-to-end 

feedforward convolutional neural network that 

reliably classifies source and type of animal calls 

(9). It two streams of audio data in a noisy 

environment with imperfect labels and modest 

datasets. Several cages of captive marmoset 

monkeys were nearby, with their audio 

recordings. Using audio-specific feature extraction 

techniques and machine learning models present 

a multi-purpose livestock vocalization 

classification algorithm (10). As part of testing the 

algorithm's multi-purpose nature, three separate 

data sets were created targeting sheep, cattle, and 

Maremma sheepdogs. Several continuous 

recordings were conducted at three different 

operational farming enterprises to reflect real-

world conditions. All data sets were highly 

accurate (sheep: 99.29%, cattle: 95.78%, dogs: 

99.67%).  This work focused the effectiveness of 

the UOZ-1, which emits the natural warning calls 

of animals, in protecting animals living near 

railway tracks (11). Two study sites along the E-

20 line where UOZ-1 devices had been installed 

were investigated between 2008 and 2012. Rail 

transport was not observed in 76% of 

observations. Most wild mammals escaped when 

a train approached and acoustic signals were 

emitted (93–85% of cases).In the study 

investigated factors that may affect microchipping 

and neutering decisions among dogs and cats 

(12). An analysis of 1047 valid responses was 

conducted using the non-parametric Chi-Square 

test, among companion animal guardians in 

Portugal. The latest work proposed sensor-based 

IoT system using Arduino and sensors. A Short 

Message Service (SMS) can also be sent to the 

farm owner through GSM (13). It also allows the 

farmer to control the entry of the animal into the 

farm field automatically or manually from home. 

Through the developed system, the farm owner 

can receive live pictures of the animals via 

telegram bot, so they can protect them.  This work 

detected the animal's presence, identify the 

animal, and divert the identified animal away 

from the field (14). An infrared passive sensor 

detects the presence of animals and a sound 

analysis system identifies them based on their 

sound. Using a bright light-emitting diode (LED) 

that works only in dark environments, specific 

ultrasonic sounds will be generated to irritate the 

identified animal. By using machine learning, 

these recent works solved challenges animal 

intrusion detection and reach the objectives (15). 

Regularly taken pictures of the entire farm were 

taken in their study. Using the Watershed 

technique, it analyzed the photos. 2D Gabor filter 

banks are used to retrieve training set features. 

The Support Vector Machines method is used for 

classification.  

Research Gap 
There are several gaps in existing knowledge and 

methods for acoustic-based wildlife monitoring. A 

major challenge is identifying specific animal 

vocalizations within complex soundscapes where 

multiple overlapping sounds overlap. In noisy 

environments, existing models struggle with such 

variability. By incorporating advanced feature 

extraction and attention mechanisms, the CILNN 

enhances the model's robustness to diverse 

acoustic conditions. Traditional models suffer 

from a lack of labeled data for endangered 

species, which hampers their performance. By 

using SHAP-based feature selection, this work 

mitigates this issue. The model performs well 

even with smaller datasets. AI models lack 

interpretability, which limits their adoption in 

wildlife conservation. With Explainable AI (XAI), 

this work provides transparency into decision-

making. 

Handling Complex Soundscapes:  Many current 

systems struggle in noisy environments or with 

multiple species vocalizing simultaneously. It is 

critical to improve AI's ability to separate and 

identify species in complex acoustic 

environments. 

Rare and Endangered Species: The training data 

for rare or endangered species is often limited. 

This gap needs to be filled by developing 

techniques that accurately identify these species. 

Handling Variations within Species: There are 

many regional dialects and individual variations 

among species. It is important to improve AI's 

ability to handle intra-species variability. 
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Explainable AI: Ecologists and conservation 

biologists would be more inclined to trust and 

adopt models that explain their decision-making 

process. 
 

Methodology 
A novel XAICILNN based framework for acoustic 

detection and classification of dangerous animals 

is proposed, addressing the challenges of complex 

soundscapes and the need for interpretable AI in 

wildlife monitoring. Our approach relies on 

Convolutional Interconnected Layer Neural 

Networks (CILNN), a deep learning architecture 

specifically designed for processing audio signals 

of animal vocalizations. Figure 2 shows the 

framework of the Proposed Work. 

There are several key components to the 

methodology: 

• Audio Dataset Preparation: This work collects 

vocalizations from five dangerous animals: 

bears, bison, cheetahs, elephants, and wild 

boars. 

• Spectrogram Analysis: Spectrogram analysis is 

used to visualize and understand each species' 

acoustic signature. 

• Feature Extraction: This phase capture the 

nuanced aspects of animal vocalization, 30 

audio features are extracted, including Mel-

frequency cepstral coefficients (MFCCs). 

• SHAP-based Feature Selection: SHAP (SHapley 

Additive Explanations) values are used for 

feature selection to optimize model 

performance. 

• CILNN Architecture: This work incorporates 

convolutional layers and attention 

mechanisms to enhance feature extraction and 

improve classification accuracy, 

• Explainable AI Integration: The model's 

decision-making process is analyzed using XAI 

techniques, including SHAP value analysis and 

decision tree visualizations. 
 

 
Figure 2: XAICILNN Based Framework of the Proposed Work 

 

Dangerous Animal Audio Dataset 
In order to collect the audio dataset, five 

dangerous animals were used: bears, bison, 

cheetahs, elephants, and wild boars. It includes 

open platforms like YouTube and publicly 

available datasets (16). Selection of audio samples 
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was based on capturing unique vocalizations of 

each species. During preprocessing, the duration 

of the audio files was standardized to maintain 

uniform temporal resolution. Clear vocalization, 

minimal background noise, and 

representativeness of the species' typical sounds 

were criteria for selection. By using this approach, 

we were able to provide a diverse but high-quality 

dataset for accurate training and testing. Figure 3 

shows the various dangerous animals list. 
 

 
Figure 3: Dangerous Animals List 

 

Spectrogram Analysis and Observation 
This work involves spectrogram analysis to 

visualize and interpret the acoustic signatures of 

bears, bisons, cheetahs, elephants, and wild boars. 

The spectrum provides a visual representation of 

the frequency content of audio signals over time, 

allowing us to observe unique patterns in animal 

vocalizations. The Short-Time Fourier Transform 

(STFT) is used to generate spectrograms for each 

species

. 
 

 
Figure 4: Various Animals Acoustic Frequencies: (A) Bear (B) Bison (C) Cheetah (D) Elephant (E) Wild 

Boar 
 

In Figure 4, spectrograms of five different 

animal's vocalizations are shown: bear, bison, 

cheetah, elephant, and wild boar. Each 

spectrogram shows the frequency content of an 

animal's sound over time. Color represents the 

intensity of the sound at each time and frequency, 
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with yellow and red indicating higher intensities 

and purple and black indicating lower intensities. 

Bears' vocalizations show vertical streaks, 

suggesting short, sharp sounds in their 

spectrograms. Longer vocalizations are indicated 

by the bison's spectrogram. Cheetahs' sounds are 

horizontal streaks, possibly chirps or calls. 

Elephant spectrograms show horizontal bands, 

possibly corresponding to low-frequency rumbles. 

There is a series of grunts and snorts in the wild 

boar's vocalization. The visualizations illustrate 

the diversity of animal vocalizations across 

different species by analyzing and comparing 

their acoustic characteristics. Table 1 shows the 

Frequency, Loudness, Energy and observation of 

the animal acoustic. 
 

Table 1: Animal sound Frequency and Observation 

Animal Dominant 

Frequency 

Loudness 

(Mean 

Amplitude) 

Energy Observation 

Bear 703.12 Hz 0.14 

 

999021.19 The energy level is moderate, typical for bear 

vocalizations. The sound is relatively quiet, 

possibly indicating a distant bear vocalization. 

Bison 193.80 Hz 0.14 1932787.25 The energy level is moderate, typical for Indian 

bison vocalizations. The sound is relatively quiet, 

possibly indicating a distant Indian bison 

vocalization. 

Cheetah 515.62 Hz 0.44 4412070.50 The energy level is high, suggesting sharp and 

intense cheetah vocalizations. The sound has a 

moderate loudness, consistent with typical 

cheetah vocalizations. 

Elephant 575.62 Hz 1.66 2799742.75 The energy level is moderate, consistent with 

typical elephant vocalizations. The sound is 

relatively loud, which aligns with the known 

powerful vocalizations of elephants. 

Wild 

Boar 

281.25 Hz 0.53 4908632.00 The energy level is high, suggesting intense and 

potentially close wild boar vocalizations. The 

sound has a moderate loudness, consistent with 

typical wild boar vocalizations. 
 

Audio Feature Extraction 
There are three main steps to preparing audio 

files for analysis. A library like pydub decodes 

MP3 files into uncompressed audio samples, 

which are then converted to a raw audio format 

like WAV. After that, the sampling rates are 

standardized (e.g., 22050 Hz), ensuring uniform 

temporal resolution across the dataset using 

librosa. With libraries like librosa, audio features 

are extracted. Each of these 30 features captures 

an aspect of the audio, such as MFCCs, chroma, 

and spectral centroid. Every audio file in the 

dataset is processed this way, resulting in a 

consistent set of features that can be used for 

further analysis. 

MFCCs (Mel-Frequency Cepstral Coefficients):  

MFCCs are derived by taking the Fourier 

transform and mapping the powers of the 

spectrum onto the Mel scale. Mel scales are based 

on human pitch perception, making MFCCs (13 

features) particularly useful for speech and music 

analysis. Energy is represented by the first 

coefficient, while spectral details are represented 

by the higher coefficients. 

Chroma Feature: Chroma features are calculated 

by: a) Computing the spectrogram b) Mapping the 

frequencies to the 12 pitch classes c) 

Summarizing the energy in each pitch class. 

Spectrogram: The spectrogram is computed with 

the Short-Time Fourier Transform (STFT). An 

overlapping signal is segmented and windowed 

(usually with Hann windows). For each windowed 

segment, the FFT is computed, and the magnitude 

is squared to get the power spectrum. The 

spectrogram shows how the signal changes in 

frequency over time. 

Spectral Bandwidth: It is calculated by weighting 

the standard deviations around the spectral 
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centroid. It measures a sound's "spread" and can 

indicate the sound's noise or harmonic content. 

Harmonic-to-Noise Ratio (HNR):  In order to 

calculate HNR, this work separates the signal into 

harmonic and noise components. HNR is 

calculated based on the energy of each component 

and the ratio between harmonic energy and noise 

energy. A higher HNR indicates a more tonal 

sound, while a lower HNR indicates a noisier 

sound. 

Tonnetz Features: The Tonnetz (tone network) 

represents tonal space geometrically. This space 

is derived from chroma features, which can reveal 

harmonic relationships that aren't apparent in 

raw chroma information. 

Pitch: Analysis of autocorrelations or cepstrums 

is often involved in pitch extraction. A 

probabilistic algorithm is used by the librosa track 

function, which is more robust to noise than a 

simple autocorrelation. 

Constant-Q Transform (CQT): Unlike the STFT, 

which has linearly spaced frequency bins, the CQT 

uses logarithmically spaced bins. This 

corresponds to musical scales, which double in 

frequency with every octave. All bins have the 

same Q-factor (ratio of center frequency to 

bandwidth). 

STFT (Short-Time Fourier Transform): The 

STFT is calculated similarly to the spectrogram, 

but without taking into account the magnitude. 

For tasks like phase coding or source separation, 

it retains phase information. 

Spectral Centroid: This is calculated by weighing 

the magnitudes of the frequencies present in the 

signal. A sound's perceived brightness is 

correlated with it. 

Spectral Bandwidth: Calculated as the weighted 

standard deviation of frequencies around the 

spectral centroid. Information about the 

spectrum's shape is provided by it. 

Spectral Flux:  Normalized spectra are typically 

calculated using the Euclidean distance between 

them. Because it detects sudden changes in the 

spectrum, it is useful for detecting onsets. 

Spectral Rolloff: In this case, a certain percentage 

(usually 85%) of the spectral energy lies below a 

certain frequency. The skewness of the spectral 

shape can be indicated by it. 

Spectral Flatness: This is calculated as the ratio 

of the geometric mean to the arithmetic mean of 

the spectrum. A high flatness (close to 1) indicates 

a noisy signal, while a low flatness indicates a 

tonal signal. 

 

Table 2: Sample Features 

Chroma_ 

Feature 

         Stft Spectral_ 

Rolloff 

Spectral_ 

Flatness 

hnr Harmonic Percussive Class 

-418.786 1.164482 -5.74144 -0.15534 -7.80E-10 -0.09633 -5.83481 Bear 

 -253.413 4.499015 -3.61844 -4.78478 -5.03E-07 -2.65346 -5.56889 Bear 

-366.548 3.333036 -5.03716 -8.52473 -0.00057 3.637412 -3.20641 Bear 

-234.422 -26.0454 -20.7128 4.981143 -7.02E-07 -5.02228 -8.60392 Bear 
 

Table 2 shows the sample values of the customer 

generated features. Animal vocalizations can be 

classified using features like MFCCs, chroma 

features, and spectral characteristics. MFCCs are 

highly effective for analyzing sound frequency 

components because they closely mimic human 

auditory perception. As MFCCs represent both 

energy and spectral details of audio signals, they 

can distinguish subtle variations in animal 

vocalizations. The chroma features of audio 

signals were used to summarize the energy 

distribution across the 12 semitone classes. When 

vocalizations exhibit tonal patterns, such as 

specific calls or chirps, they can assist in species 

identification. Sound spectrum characteristics, 

such as spectral centroid, bandwidth, roll-off, and 

flatness, provide insight into the overall shape and 

distribution of sound. A robust classification relies 

on identifying features like brightness, harmonic 

structure, and noisiness, which vary widely 

between species. As a result, the model 

understands audio signals in both frequency and 

temporal domains. It improves its ability to 

classify complex animal vocalizations. 

SHAP Based Feature Selection 
Feature selection significantly reduces the 

training time in the dataset when the model is 

applied to it. In this sense, the training time 

without feature selection and that with feature 

selection were compared to understand the 

impact of feature selection. SHAP (SHapley 

Additive Explanations) values identify important 
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features in a dataset by quantifying their 

contribution to model predictions (17). Based on 

game theory, SHAP values assign "credit" for a 

prediction among the input features. For animal 

sound classification, it helps to identify which 

audio features, such as MFCCs, chroma features, 

and spectral characteristics and influence species 

differentiation. It provides insight into how 

different features interact and affect model 

predictions by calculating the marginal 

contribution of each feature. In this process, 

features are selected to enhance model accuracy. 

The dataset is reduced to the most relevant and 

impactful features. Using essential features 

improves the model's generalization and reduces 

overfitting. It improves the model's 

interpretability and aid in further refining the 

model by visualizing feature importance. The 

SHAP tool allows understanding machine learning 

models using game theory. Shapley values from 

game theory and their extensions are used to 

connect optimal credit allocation with local 

explanations. As a model agnostic XAI, SHAP can 

be applied to any model post-training.  In SHAP 

values, each prediction is explained by the 

features of the dataset contributing to the model's 

output. Accordingly, SHAP approximates Shapley 

values, a concept from game theory that solves 

the problem of computing the contribution of 

each subset of features to a model's prediction 

given a dataset with m features. Despite the 

exponential nature of the problem, SHAP 

approximates the Shapley value solution using 

weighted linear regression for all models or 

ensemble tree models with different assumptions 

about feature dependence. In linear regression 

models, the coefficients used to weight the 

features are used to explain all predictions, but 

they don't account for individual data points' 

heterogeneity.  The effect of a feature on a data 

point may differ from that on another data point. 

This is consistent with local explanations being 

more accurate than global ones. Similarly, non-

linear dimensionality reduction methods estimate 

global similarities through local similarities. In 

SHAP, local explainability is explored and used to 

build surrogate models for black boxes. Then, 

SHAP tests the change in prediction by slightly 

changing the input value for a feature, and if the 

prediction doesn't change much, the feature for 

that data point may not be an important 

predictor. Figure 5 shows the generation of the 

SHAP Features. 

 

 
Figure 5: Generation of SHAP Features 

 

The feature information shown in Figure 5, this 

work evaluates SHAP as a feature selection 

approach. To begin, a SHAP values matrix is 

generated for each class (c) in the dataset, which 

encodes the features that contribute to each data 

point, and then the mean of the columns of each 

matrix is calculated. Each class's mean SHAP 

values are summed and ordered in decreasing 

order. First, the most important feature appears 

in the first position, the second feature appears in 

the second position (13). 
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Input: Selected Feature Set X, Class Set C 

Output: Ranked Feature Set R, Predicted Output (f_x) 

Algorithm: SHAP Based Feature Selection 

1. Train a base model M on the full feature set X 

2. Set number of iterations K for SHAP value estimation 

3. Initialize empty list R for ranked features 

4. For each feature j in X: 

a. Initialize S_j = 0 (SHAP value for feature j) 

5. For k = 1 to K: 

6. Randomly select a subset of features S ⊆ X \ {j} 

7. Predict f_x(S ∪ {j}) using model M 

8. Predict f_x(S) using model M 

9. Calculate marginal contribution: MC_k = f_x(S ∪ {j}) - f_x(S) 

10. Update S_j: S_j += MC_k 

11. φ_j = S_j / K 

12. R = sort (|φ_j| for j in X, descending) 

13. Select top N features from R based on a threshold or desired number of features 

14. Retrain model M' on selected features 

15. For each new input x': 

16. f_x = M'(x') 

17. Ranked feature set R and SHAP values φ for interpretation 

End Algorithm 

Algorithm 1: SHAP Based Feature Selection 

Algorithm 1 shows the SHAP Based Feature 

Selection and Figure 6 shows the SHAP Based 

Selected Features. HNR, MFCC, Chroma Features 

are the important features in the selection. 
 

 
Figure 6: SHAP Based Selected Feature 

 

CILNN - Convolutional Interconnected 

Layer Neural Network 
Numerous applications depend on audio 

classification, ranging from speech recognition to 

music genre classification. Traditional CNNs have 

been successful in this domain, learning 

hierarchical feature representations from raw 

audio data. Nevertheless, these models face 

challenges in capturing complex patterns and 

long-range dependencies. To overcome such 

limitations, this work proposes the Convolutional 

Interconnected Layer Neural Network (CILNN), 

which incorporates convolutional layers and 

attention mechanisms. CILNNs begin with a series 

of convolutional layers that extract low-level 

audio features. Layers are designed to capture 

local patterns such as frequency components and 

temporal dynamics. A max-pooling layer follows 

each convolutional layer to reduce spatial 

dimensions. In CILNN, low-level features are 

extracted from audio input through a series of 
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convolutional layers. In these layers, frequency 

components and temporal dynamics are captured. 

In order to reduce the spatial dimensions and 

retain the most salient features, each 

convolutional layer is followed by a max-pooling 

layer. 

𝑌[𝑖, 𝑗] = ∑  

𝐾−1

𝑚=0

∑  

𝑘−1

𝑛=0

𝑋[𝑖 + 𝑚, 𝑗 + 𝑛]. 𝑊[𝑚, 𝑛] + 𝑏 

𝑌 = 𝑂𝑢𝑡𝑝𝑢𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑝, 𝑊 = 𝐹𝑖𝑙𝑡𝑒𝑟, 𝑏 = 𝐵𝑖𝑎𝑠, 𝐾 = 𝐹𝑖𝑙𝑡𝑒𝑟 𝑠𝑖𝑧𝑒 

Through the use of interconnected layers, parallel 

convolutional paths can be introduced to enhance 

feature extraction. Using these paths, the model 

learns complementary features while applying 

different convolutional filters, capturing a broader 

range of patterns. Feature representation is 

enhanced by concatenating these parallel paths. X 

is the input feature map of shape H×W×C, where 

H and W are the height and width of the feature 

map, and C is the number of channels. Two 

parallel convolutional layers are applied to the 

input feature map X. The convolutional filters of 

the two parallel paths are f1 and f2. Y1 and Y are 

respectively the outputs of these convolutional 

operations. 

𝑌1 = 𝑓1(𝑋) 𝑎𝑛𝑑  𝑌2 = 𝑓2(𝑋) 

Where f1and f2represent convolution operations defined as: 

𝑌1[𝑖, 𝑗, 𝑘] = ∑  

𝐻′

𝑚=1

∑  

𝑊′

𝑛=1

∑  

𝐶

𝐶=1

𝑋[𝑖 + 𝑚, 𝑗 + 𝑛, 𝑐]. 𝑊1(𝑚, 𝑛, 𝑐, 𝑘) 

𝑌2[𝑖, 𝑗, 𝑘] = ∑  

𝐻′

𝑚=1

∑  

𝑊′

𝑛=1

∑  

𝐶

𝐶=1

𝑋[𝑖 + 𝑚, 𝑗 + 𝑛, 𝑐]. 𝑊2(𝑚, 𝑛, 𝑐, 𝑘) 

Where W1and W2are the weights of the 

convolutional filters f1 and f2, respectively, and H 

′and W′ are the height and width of the 

convolutional filters. The outputs Y1  and Y2  are 

concatenated along the channel dimension to 

form the combined feature map Y 

𝑌 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑌1, 𝑌2) 

The CILNN incorporates attention mechanisms to 

focus on the most relevant parts of the feature 

maps. Attention is focused on the outputs of the 

parallel convolutional paths in the interconnected 

layers. Using this method, the model can 

emphasize important features and reduce the 

impact of irrelevant information. By generating 

attention weights, the attention mechanism scales 

feature maps and highlights significant areas. 

Convolution and interconnected layers are 

followed by flattening of the feature maps and 

passing them through fully connected layers. With 

the help of these layers, high-level reasoning and 

classification are carried out based on the 

extracted features. The dropout technique is 

applied to these layers to prevent over fitting and 

improve generalization. Using softmax activation, 

the final output layer generates class probabilities 

based on the input data. Final output layers 

produce class probabilities using soft-max 

activation functions. A target class in the audio 

classification task corresponds to the number of 

units in this layer.  This CILNN architecture has 

been improved in the following ways: 

• Interconnected layers: The model incorporates 

interconnected layers that connect the outputs 

of different convolutional layers. 

• Attention mechanism: A second 

interconnected layer includes an attention 

mechanism that aids in classification by 

focusing on the most relevant features. 

• Global average pooling: This method reduces 

parameter numbers and enables spatial 

information to be aggregated. 

• Fully connected layers with dropout: Adding 

fully connected layers with dropout prevent 

over fitting and helps learn higher-level 

representations. 
 

Input: Selected Feature Set X, Class Set C 

Output: Predicted Output (f_x) 

Algorithm: Convolutional Interconnected Layer Neural Network (CILNN) 
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1. Define input layer 𝑋 ∈  𝑅^(𝐻 × 𝑊 × 𝐶) 

2. Initialize convolutional layers with filters 𝑊_𝑙 ∈  𝑅^(𝐾 × 𝐾 × 𝐶_𝑖𝑛 × 𝐶_𝑜𝑢𝑡) 

3. Set up interconnected layers with parallel paths 

4. Initialize attention mechanism weights 𝐴 ∈  𝑅^(𝐻 × 𝑊 × 𝐶) 

5. Define fully connected layers with weights W_fc and biases b_fc 

6. Set up output layer for |C| classes 

7. For each convolutional layer l: 

𝑌[𝑖, 𝑗] = ∑  

𝐾−1

𝑚=0

∑  

𝑘−1

𝑛=0

𝑋[𝑖 + 𝑚, 𝑗 + 𝑛]. 𝑊[𝑚, 𝑛] + 𝑏 

8. Apply activation: Y_l = ReLU(Y_l) 

9. Apply max pooling: Y_l = MaxPool(Y_l) 

10. For interconnected layers: 

𝑌1[𝑖, 𝑗, 𝑘] = ∑  

𝐻′

𝑚=1

∑  

𝑊′

𝑛=1

∑  

𝐶

𝐶=1

𝑋[𝑖 + 𝑚, 𝑗 + 𝑛, 𝑐]. 𝑊1(𝑚, 𝑛, 𝑐, 𝑘) 

𝑌2[𝑖, 𝑗, 𝑘] = ∑  

𝐻′

𝑚=1

∑  

𝑊′

𝑛=1

∑  

𝐶

𝐶=1

𝑋[𝑖 + 𝑚, 𝑗 + 𝑛, 𝑐]. 𝑊2(𝑚, 𝑛, 𝑐, 𝑘) 

11. Y = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑌1, 𝑌2) 

12. A = 𝜎 (𝑊_𝑎 ⋅  𝑌 +  𝑏_𝑎) 

13. Y_att = A ⊙ Y 

14. Flatten: Y_flat = Flatten(Y_att) 

15. For each fully connected layer: 

16. Z = 𝑊_𝑓𝑐 ⋅  𝑌_𝑓𝑙𝑎𝑡 +  𝑏_𝑓𝑐 

17. Y_fc = ReLU(Z) 

18. Apply dropout: Y_fc = Dropout (Y_fc, p) 

19. P = softmax (W_out ⋅ Y_fc + b_out) 

20. Compute cross-entropy loss:      𝐿 =  −∑_(𝑖 = 1)^|𝐶| 𝑦_𝑖 𝑙𝑜𝑔(𝑃_𝑖) 

21. Calculate gradients: 𝛻𝑊 =  𝜕𝐿/𝜕𝑊 

22. Update weights: W = W - η∇W (using optimizer, e.g., Adam) 

23. Perform forward pass on new input X_new 

24. P = argmax_c(P_c) 

25. Apply SHAP values: 𝜑_𝑗 =  ∑_(𝑆 ⊆ 𝐹\{𝑗}) (|𝑆|! (|𝐹| − |𝑆| − 1)!)/(|𝐹|!) (𝑓_𝑥(𝑆 ∪ {𝑗})  −  𝑓_𝑥(𝑆)) 

26. where F is the set of all features, and f_x is the model output for input x 

End Algorithm 

Algorithm 2: Convolutional Interconnected Layer Neural Network (CILNN) 
 

Compared to other state-of-the-art deep learning 

models for audio classification, CILNN's 

performance would be more comprehensively 

evaluated. CNNs, LSTMs, and hybrid CNN-LSTM 

architectures are commonly used in audio 

classification tasks and could serve as 

benchmarks. They capture spatial and temporal 

patterns in audio signals. For example, CNNs excel 

at extracting features from spectrograms, while 

LSTMs model sequential dependencies in time-

series data, making them suitable for processing 

dynamic vocalizations. A comparison of CILNN 

with these models might reveal areas where it 

might fall short, such as handling complex 

temporal dependencies (Algorithm 2, Table 3). 

 

Table 3: CILNN Parameters 

Layer Type (Parameters) Parameter Values 

Input Layer Defined by the input shape of the model 

Conv2D (First Block) 32 filters, (3, 3) kernel, ReLU 

MaxPooling2D (First Block) (2, 2) 

Conv2D (Second Block) 64 filters, (3, 3) kernel, ReLU 

MaxPooling2D (Second Block) (2, 2) 
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Conv2D (Parallel Block 1) 64 filters, (3, 3) kernel, ReLU 

Concatenate (Block 1) Original output + Parallel Conv1 layer 

Conv2D (Third Block) 128 filters, (3, 3) kernel, ReLU 

MaxPooling2D (Third Block) (2, 2) 

Conv2D (Parallel Block 2) 128 filters, (3, 3) kernel, ReLU 

Conv2D (Attention) 1 filter, (1, 1) kernel, Sigmoid (for attention mechanism) 

Multiply (Attention) Parallel Conv2 features + Attention layer 

Concatenate (Block 2) Original output + Attended Features 

Conv2D (Fourth Block) 256 filters, (3, 3) kernel, ReLU 

GlobalAveragePooling2D Average pooling over all spatial dimensions (height and width) 

Dense (Fully Connected 1) 256 units, ReLU 

Dropout 0.5 

Dense (Output Layer) num_classes (Speices), Softmax 
 

 
Figure 7: CILNN Accuracy and Loss – (A) Model Accuracy, (B) Model Loss 

 

Figure 7 illustrates two graphs tracking the 

performance of a machine learning model over 

time. Model accuracy is displayed on the left, 

while model loss is displayed on the right. 

Training accuracy improves and fluctuates at a 

high level, while validation accuracy remains 

lower and more stable. The loss graph shows 

consistently low training loss, but large spikes in 

validation loss over time. A model that performs 

well on training data but struggles to generalize to 

new, unknown data strongly suggests over fitting. 

A growing gap between training and validation 

performance indicates that the model memorizes 

the training set rather than learning generalizable 

patterns. 
 

Results and Discussion 
In this research work, Python was used as the 

primary programing language and various Python 

libraries were used. To manage the dependencies 

efficiently, MiniConda, a lightweight package 

manager for Python, was used. A 2.70 GHz Intel 

Core i7-2620M processor was used for 

processing, providing substantial power. With 16 

GB of RAM, the system can handle large datasets 

and complex computations with ease. A 64-bit 

Windows 7 operating system provides a stable 

and familiar platform for conducting research. 

Accuracy measures correctly classified data, but it 

does not distinguish foreground errors from 

background errors (18). 
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Figure 8: Accuracy and Error Rate 

 

Figure 8 compares the performance of three 

machine learning classifiers: Random Forest, 

Decision Tree, and CILNN. It displays accuracy 

(blue) and error rate (orange) for each model. 

CILNN demonstrates superior performance with 

90.6% accuracy and 9.4% error rate, significantly 

outperforming the others. Random Forest follows 

with 68.2% accuracy and 31.8% error rate, while 

Decision Tree shows the weakest performance at 

48.5% accuracy and 51.5% error rate. The 

complementary nature of accuracy and error rate 

is evident, as they sum to 100% for each classifier. 

This visual representation effectively highlights 

the substantial performance gap between CILNN 

and the other two classifiers for the given task or 

dataset. 
 

 
Figure 9: Precision-Recall 

 

Figure 9 shows the Receiver Operating 

Characteristic (ROC) curves for Random Forest, 

Decision Tree, and CILNN. At various thresholds, 

dotted diagonal lines represent random classifier 

performance. Multi-curves consistently above the 

diagonal indicate good performance across 

various configurations (19). Decision Tree graphs 

display similar multiple curves, but they perform 

slightly worse. For some configurations, the 

CILNN graph shows fewer but more distinct 

curves, with some reaching high into the top-left 

corner. AUC values in each graph indicate the 

performance of the overall model, with larger 

values indicating better performance.  Figure 10 

shows the confusion matrix. 

 

 
Figure 10: Confusion Matrix 
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Figure 11: ROC Graph 

 

Three different machine learning models are 

compared in terms of their performance across 

different recall thresholds in figure 11. Graphs 

plot precision versus recall for different classes, 

likely representing different animal species. This 

model shows consistent performance across 

recall values, with clear separation between 

classes. As recall varies, the Decision Tree model 

shows less nuanced changes in precision. Multiple 

intersecting lines and variable precision-recall 

trade-offs are revealed in the Neural Network 

graph. There are areas of high precision for some 

classes, but also areas of greater volatility. Each 

model has unique strengths and weaknesses 

when it comes to balancing precision and recall. 

Model selection and tuning can be influenced by 

whether the priority is overall consistency, 

simplicity, or maximizing performance for specific 

classes. 
 

 

Discussion 
An audio correlation heat map shows how audio 

features relate in figure 12. These features show 

complex interdependencies, with many MFCCs 

showing moderate to strong correlations, both 

positive and negative. There could be overlapping 

information about the audio signal's spectral 

properties represented by these coefficients. 

There is an inverse relationship between spectral 

bandwidth and several MFCCs, indicating that this 

overall measure of frequency spread is negatively 

correlated. Audio signals demonstrate interesting 

correlations between frequency-weighted energy 

(FWR), harmonics, and percussive features, 

highlighting their multifaceted nature. For audio 

analysis tasks like classification, speech 

recognition, understanding these relationships is 

crucial, as they can guide feature selection 

processes, identify redundant information, and 

ultimately improve performance. 

  

 
Figure 12: Correlation Map 
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Acoustic prediction using AI classifiers is 

enhanced by Explainable AI (XAI) to provide 

transparency and interpretability. It helps make 

the algorithm's black-box nature more 

transparent by explaining how it makes acoustic 

predictions. By using XAI techniques, it can 

explain individual predictions based on acoustic 

features. It is possible to validate the model's 

validity by understanding the reasoning behind 

predictions. New relationships or patterns may be 

discovered in acoustic data using XAI. 

 

 
Figure 13: Explainable Tree for Random Forest 

 

Figure 13 shows a visualization of the results of a 

Random Forest model for identifying different 

animals with the goal of distinguishing cheetahs 

from other species. Various animal classes are 

predicted by the model. At 0.27, "Bear" has the 

highest probability, followed by "Elephant" at 

0.20. The probability for "Cheeta" (likely a 

misspelling) is 0.15. The model's decision-making 

process is divided into two branches, "NOT 

Cheeta" and "Cheeta". An input is classified using 

various features (such as MFCC11, MFCC4, etc.). 

The right table shows the values for each feature. 

This model includes audio-related measurements 

(MFCCC: Mel-frequency cepstral coefficients, 

spectral bandwidth, etc.). This is likely an audio-

based classification model using animal 

vocalizations. Different audio features are used to 

make the final classification. 
 

 
Figure 14: Explainable Tree for Decision Tree 
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Figure 14 shows the output of a decision tree. 

Here are the prediction probabilities (0 to 4) for 

different classes. This instance predicts class 2 

with a probability of 1.00. It shows a simplified 

decision tree or rules used to make the 

classification. There are a number of decision 

nodes or leaves, each with a condition, such as 

"mfcc4 <= 1.06" or "spectral_rolloff <= 7.50". The 

right side of the table shows various features and 

their corresponding values. MFCCs, spectral roll 

offs, spectral bandwidth, etc., appear to be related 

to audio analysis. In this model, audio samples 

appear to be classified based on their genre or 

event, possibly for the purpose of audio 

classification. MFCCs, spectral properties, and 

other acoustic measurements are among the 

features used. In the decision tree, each node 

represents a decision based on a specific feature 

value threshold that is used to navigate to a final 

classification. 
 

 
Figure 15: Explainable Tree for CILNN 

 

Figure 15 shows the to be a visualization of a 

CLINN. Prediction probabilities are shown on the 

left (0, 1, 2, 3). The probability of Class 1 is 1.00, 

suggesting it is the predicted class. In the middle, 

it seems a simplified decision tree. Different 

decision nodes are displayed with features and 

thresholds. One of the decision points is "mfcc7 > 

8.48". Feature values are shown on the right. The 

model uses these features as inputs. A positive or 

negative influence might be indicated by the 

colors (orange and blue). It shows the some 

notable features include: spectral centroid: 19.11, 

mfcc7: 14.57, tonnetz_feature: 201.22 and 

chroma_feature: -232.12. A tree structure in the 

middle shows how the model predicts. By 

visualizing the classification process, it can better 

understand how the model makes predictions.  

Developing the system for real-world 

environments is one significant limitation. Real-

world applications of the CILNN model show 

strong performance. The use of labeled datasets is 

another limitation, which can be scarce or 

incomplete. For broader application, the dataset 

needs to include more species and environmental 

conditions. Furthermore, with its attention 

mechanisms and interconnected layers, the CILNN 

model may require significant hardware 

resources, limiting its scalability for low-resource 

settings. 
 

Conclusion  
The CILNN (Convolutional Interconnected Layer 

Neural Network) was implemented to detect 

dangerous animals using audio signals, with an 

emphasis on XAI model interpretability. A new 

neural network architecture combines advanced 

feature extraction, SHAP-based feature selection, 

and advanced feature extraction to achieve high 
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classification accuracy. CILNN outperforms 

traditional machine learning models, 

demonstrating its potential for wildlife 

monitoring and management applications. With 

the help of XAI methods, including SHAP values 

and decision tree visualizations, it gained valuable 

insight into the decision-making processes of our 

CILNN and traditional models. Analyzing the 

interpretability of various audio features shed 

light on the models' classification strategies and 

revealed their relative importance. This 

transparency improves trust in the models and 

offers avenues for further refinement and 

optimization. Despite promising results, there are 

several directions for future research. This 

includes expanding the dataset to include more 

species and environmental conditions, 

investigating real-time processing capabilities for 

field deployment, and integrating the audio-based 

system with other sensors for more 

comprehensive wildlife monitoring. Furthermore, 

XAI techniques tailored for audio classification 

tasks could provide even deeper insights into 

model behavior. Bioacoustics and wildlife 

conservation have benefited greatly from 

interpretable deep learning.  
 

Abbreviations 
XAI: Explainable AI, CILNN: Convolutional 

Interconnected Layer Neural Network, SHAP: 

SHapley Additive explanation, MFCC: Mel-

Frequency Cepstral Coefficients. 
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