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Abstract 
Deoxyribonucleic (DNA) sequence categorization is a significant task in a generic computational setting for 
biomedical data processing. The sequence information contains the genome information it can retrieve from human 
chromosome cells. The gene information in the DNA sequence is used to predict the disease, especially cancer 
diagnosis and therapy. The class samples in the gene expression data are imbalanced. The main objective is to 
enhance the sequence of samples to make an accurate class prediction. To analyze and categorize the sequence 
information, which is the challenge task, dominant computational techniques are required. Deep learning (DL) and 
machine learning (ML) techniques are used for training purposes to process and categorize the genome information. 
In the data preprocessing stage for converting the sequence information into numerical values, ordinary encoding, 
one-hot encoding, and k-mer counting techniques are applied. The DNA sequence information contains insufficient 
samples based on the class labels. To predict better results, the proposed Wasserstein Sequence Generative 
Adversarial Network (WSEQ-GAN) method is utilized for augmented sequence data, and results are compared with 
traditional methods like sampling and SMOTE. Traditional ML and DL techniques like Support Vector Machine (SVM), 
K Nearest Neighbor (KNN), and Long Short-Term Memory (LSTM) are used to train and classify the sequence data. 
The augmented and non-augmented data using WSEQ-GAN were compared with existing methods. As a result, the 
proposed WSEQ-GAN with the LSTM network achieved 98% classification accuracy better than existing classification 
and augmentation techniques. 
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Introduction
DNA, or deoxyribonucleic acid, stores the genetic 
information for every organism, including 
humans. The DNA information is fetched from 
human chromosome cells. DNA values are 
encoded in the sequence information based on the 
four nucleotides: adenine (A), guanine (G), 
cytosine (C), and thymine (T). Each of the 
nucleotides in the DNA molecule is paired with 
each other (A with T and G with C), and it forms a 
sequence for the phosphate and sugar molecules. 
Figure 1 shows that the DNA base pair is 
connected to the sugar-phosphate backbone (1). 
The complete DNA sequence for the human 
genome is around 6 billion letters. DNA 
sequencing will continue to expand the volume 
and complexity of such data sets. For analyzing 
each genome sequence with other sequences, we 
require some computational techniques. The 
challenge has shifted from collecting biological 
data to extracting useful knowledge from it. The 
continuous advancement of biological data 
analysis methods has resulted in the 
establishment of a difficult new field known as 
bioinformatics. Bioinformatics is to handle 

biomedical data analysis using computational 
methods. The rapid development of data analysis 
technologies has resulted in a huge number of 
useful and scalable algorithms. Machine learning 
and deep learning techniques are used to analyze 
and compute the huge volume of biomedical data. 
Analysis of single-cell DNA sequencing data is 
complicated due to biases and aberrations caused 
by DNA extraction and whole-genome 
enhancement, such as mutated imbalance and 
dropout. The number of class samples in the DNA 
sequence is imbalanced (2). AI-based ML/DL 
computational tools are used for genome data to 
extract valuable information hidden in the large 
amount of data. Machine learning is a technology 
that allows machines to learn about a set of data 
despite being explicitly instructed what to learn. 
To learn the parameter values based on 
supervised and unsupervised fashion. The 
supervised learning approach is to learn the 
values based on training and testing sets with 
class labels. The unsupervised learning approach 
is to recognize patterns in huge amounts of data 
and make predictions about actual events without  
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the assistance of humans. The DL algorithm 
analyzes a dataset and finds patterns and crucial 
information by modeling how neurons in the 
human brain interact with one another. It is a 
computational system that models the brain's 
ability to balance the significance of some input 
with other inputs and deals with bias values (3). 
ML is used for the classification and regression 
tasks. The supervised learning approach involves 
classification and making predictions. The 
unsupervised learning approach is to analyze and 
cluster the unlabeled data in the dataset. There 
are some traditional supervised and unsupervised 
techniques in machine learning: support vector 
machines (SVM), random forests (RF), logistic 

regression (LR), K-nearest neighbor (KNN), and 
neural networks (NN) (4). The DL is used to 
extract the most significant features from the 
biological data and to predict a better outcome. 
There are some traditional DL methods like feed-
forward neural networks (FNN), recurrent neural 
networks (RNN), convolutional neural networks 
(CNN), and auto-encoders (AE) (5). ML and DL 
methods are used to identify the relevant 
information in the genomic data and predict 
better results. Researchers in the field of genomic 
data are attempting to reliably identify genetic 
diseases, determine the primary type of disease 
and how it will progress, and find disease-causing 
genome variants. 

 

 
Figure 1: DNA Paired Nucleotides (6) 

 

In order for the DNA sequence information to 
predict the particular class outcome 
appropriately, the class samples should be 
balanced. As a result, sequence augmentation is 
required to solve the imbalance problem. 
Traditional augmentation approaches such as 
sampling and SMOTE. Sampling is a data 
augmentation strategy used to deal with uneven 
datasets where the majority class outnumbers the 
minority class. It adjusts the distribution of 
classes by raising the number of samples in the 
minority group. SMOTE is another approach; it 
generates samples from the minority class. It 
generates a synthetically or virtually class-
balanced training set and then trains the classifier. 
Two reconstruction techniques in deep learning, 
like the Variational Autoencoder (VAE) and the 
Generative Adversarial Network (GAN), are used 
to reconstruct the data into similar inputs. VAE is 
used to reduce the input dimensionality and 
reconstruct the original input. Another approach, 
GAN, is used to generate fake samples close to the 
original ones. GAN consists of two adversarial 
networks: a generator and a discriminator. The 
generator network is used to generate the fake 
samples. The discriminator network distinguishes 
between the real and fake samples. While 
generating the data samples based on the 
discriminator feedback, it will update the 
generator. Traditional GAN architecture is used to 
generate the image samples. In the generator and 

discriminator network, they utilized the 
convolutional layers for generating and classifying 
the samples. The DNA sequence data is a set of 
characters for the particular DNA sequence. The 
GAN technique is used to generate vast amounts 
of biological data, such as DNA molecule 
sequences. As a result, we developed the 
proposed model, WSEQ-GAN, to generate the 
sequence of characters using the GAN principle. 
The proposed method, WSEQ-GAN, can generate 
synthetic sequence samples instead of images 
using Wasserstein distance. The Wasserstein loss 
is used to increase model stability while training 
and includes a loss function that corresponds with 
sequence quality. The Wasserstein loss value 
assures that the quality of data samples generated 
by the GAN network is high, and it also ensures 
that the data samples generated are more 
realistic. The benefit of the Wasserstein loss 
function lies in its ability to train the model and 
provide a loss value that is correlated with the 
quality of the sequences that are generated. The 
generator and discriminator networks utilized the 
recurrent network for generating and classifying 
the data instead of the convolution network. This 
research carries out three stages. First, we 
generate the sequence data samples based on the 
original samples. Second, we convert the 
sequence information into numerical values for 
the classification task. Finally, the ML and DL 
techniques are used to classify the DNA sequence 
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information. In the existing studies, the traditional 
GAN is used to augment the image data samples. 
Thus, we introduced the WSEQ-GAN method for 
data augmentation; it is used to generate 
sequence data close to the original sequence 
information and to predict better results. The 
proposed model consists of two adversarial 
networks: generative and discriminative. The 
generative sequence model utilizes a recurrent 
neural network instead of a convolutional neural 
network. The recurrent convolutional neural 
network is our discriminator in this research 
because it is very effective in sequence 
classification. Deep learning advancements have 
increased the classification and prediction of 
target-class information. In terms of outcomes, 
networks using deep learning differ from machine 
learning methods. Deep networks are capable of 
handling massive amounts of data. However, the 
most time-consuming aspects of deep learning 
networks are training and retraining, which 
necessitate high-performance systems. SVM, KNN, 
and LSTM networks are used to integrate with 
WSEQ-GAN to predict the DNA sequence class. 
Researchers are used to classify and predict 
diseases based on the DNA sequence information 
available. There are several techniques available 
for reading and sequencing the DNA information. 
This research focuses on the classification and 
prediction of diseases based on DNA sequence 
information. Gao et al. proposed a sequencing tool 
to generate an unbiased whole-genome 
circulating tumor DNA (ctDNA) methylation using 
a small amount of plasma. The aim is to develop 
extremely specific and sensitive biomarkers for 
molecular subtyping and the early diagnosis of 
cancer. In multicenter patient cohorts, a 
diagnostic signature consisting of 15 ctDNA 
methylation markers demonstrated high accuracy 
in the early detection and advanced stages, with 
AUCs of 0.967 and 0.971. They also managed to 
identify the types of cancer, such as hepatocellular 
carcinoma and lung cancer (7). Nurk et al. 
developed a computational technique to identify 
the thousands of large serine recombines (LSRs) 
and their DNA attachment in human cells. It 
increases the LSR diversity by more than 100-fold 
and enables the prediction of insertion location 
specificities. They can be classified as genome-
targeting, landing pad, or multi-targeting LSRs. It 
achieved genome-integrating efficiencies of 40–
75% (8). Logeshwaran J et al. proposed an 
improvised machine learning approach to analyze 
tumor sequence patterns in the human genome 
sequence. It analyzes and monitors the large 
genetic tumor sequence with the different types of 
tumors and their sizes (9). Das et al. proposed an 
approach for predicting cancer disease using DNA 
gene sequences. The proposed approach consists 

of three distinct numerical techniques for 
mapping. The 1D signal was converted into the 2D 
signal. The feature variables are obtained using 
VGG16, and the images are classified using SVM. 
The 2D DNA images are classified with a CNN 
model, which achieved an accuracy of 98.86%. 
The 1D CNN model achieved an accuracy of 
80.36%. The model indicates that it can extract 
the most significant features using the CNN model 
and distinguish between normal and tumor liver 
gene sequences (10). Ritch et al. proposed a 
machine learning framework for classifying DNA 
repair sequences from ctDNA exomes. Particular 
types of DNA damage repair (DDR) defects can 
increase susceptibility to new medicines for 
prostate cancer. XGBoost-derived models 
performed well in identifying BRCA2, CDK12, and 
mismatch repair deficits in metastatic prostate 
cancer, with AUC values of 0.99, 0.99, and 1.00, 
respectively (11). Nguyen et al. utilized 
concurrent analysis of associated cancer 
mutations along with fragment length patterns to 
discriminate between mutations from numerous 
sources. The proposed method is used to 
differentiate between healthy and non-healthy 
people with hepatocellular carcinoma (HCC). The 
classification model was used to fragment the 
features of circulating tumor DNA (ctDNA) for 
genome sequencing. The model achieved an AUC 
of 0.88, a specificity of 81%, and a sensitivity of 
89% (12). Hamed et al. utilized machine learning 
algorithms to classify the DNA sequence 
effectively based on its features. The study also 
investigates how pattern length affects the 
accuracy and time-based complexity of each 
approach. The SVM linear model achieved the 
lowest execution time if the pattern length varied. 
It also achieved the highest accuracy value of 
0.963 and the highest F1 value of 0.97 (13). 
Senanayake et al. proposed the DeepSelectNet 
method for classifying nanopore sequencing data. 
DeepSelectNet is a practical solution for 
improving selective sequencing effectiveness. The 
proposed method achieved a 12% enhancement 
in accuracy when compared to the predecessor 
Squiggle Net deep learning method. It also 
achieved a precision and recall value of 
approximately 95% (14). Alshayeji et al. proposed 
a novel approach for combining machine learning 
and NLP for the classification of genome 
sequences. The author utilized 19 meta-sequences 
of genomic data to investigate. In the 
preprocessing stage, a bag of words and k-mer 
counting were utilized. The KNN model achieved 
the highest classification accuracy of 98.6%, a 
precision value of 98.5%, a recall value of 98.6%, 
and an F1-score of 98.4% for predicting the tumor 
DNA sequence samples (15). In this research 
work, we are predicting the cancer disease of the 
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human genomic DNA sequence using Wasserstein 
sequence augmentation and traditional 
classification techniques.  
 

Methodology 
The classification in the DNA sequence gene data 

prediction work consists of extracting features, 

building classifiers for classification, generating 

the synthesis sequence data, and selecting 

optimized classifiers. This research work carried 

out data augmentation and data preprocessing.  In 

the first stage of data augmentation, the sequence 

information in the dataset is imbalanced with 

class labels. So, we require sequence data 

augmentation techniques for predicting a better 

outcome. In the second stage of data 

preprocessing, the sequence information is 

converted into numerical values for selecting the 

significant features for classification. The 

proposed method is Wasserstein Sequence-GAN 

(WSEQ-GAN) for augmenting the sequence 

information close to the original sequence 

information. Figure 2 shows the proposed model 

for DNA sequence prediction. 

 

 
Figure 2: Proposed Work for DNA Sequence Prediction 

 

Dataset 
The DNA sequence data was collected from the 

Cancer Genome Atlas (TCGA) repository. The 

dataset contains 7 gene classes with 4603 data 

sequence samples. The human DNA sequence data 

is primarily used to predict the cancer disease 

with appropriate classes. The definitions for each 

of the seven classes in the dataset are (i) G 

protein-coupled receptors (GPCRs) are receptors 

on the cell's surface that detect substances from 

outside the cell and initiate physiological 

reactions. Its primary application is in the 

detection of cancer. (ii) Tyrosine kinases (TK) are 

signaling cascade mediators that regulate a wide 

range of biological activities, including 

development, differentiation, metabolism, and the 

death of cells, in response to stimuli both internal 

and external. Recent discoveries have linked 

tyrosine kinases to the pathogenesis of cancer. 

(iii) Protein tyrosine phosphates (TP) are 

enzymes that eliminate groups of phosphate from 

activated tyrosine amino acids in proteins. (iv) 

Protein tyrosine phosphates (PTPs) have been 

identified as major targets for a variety of 

disorders, including cancer, and significant efforts 

have been undertaken to develop novel PTP 

inhibitors to combat cancer growth and 

metastasis formation. (v) Syntase enzymes (SE) 

are enzymes that connect transfer RNAs to their 

cognate amino acids during protein translation. 

(vi) Ion channels (IC) are one of two types of 

iontophoretic proteins; ion transporters are the 

other. (vii) Transcription factors (TF) assist in the 

expression of the appropriate genes in the correct 

cells of the body at the correct time. Table 1 

describes the number of samples presented in the 

DNA sequence dataset. 
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Table 1: Class Description of DNA Sequence 
Gene Family  Number of Samples Class Label 

GPCR 531 0 

TK 534 1 

TP 349 2 

PTP 672 3 

SE 711 4 

IC 240 5 

TF 1343 6 
 

Feature Selection 
To select the most appropriate features in the 

DNA sequence is used for accurate prediction in 

the gene classes. To classify the gene data, the 

sequence information is converted into numerical 

values. DNA sequence data contains the 

nucleotide sequence and class label. The sequence 

information is converted into numerical values in 

the preprocessing stage. They observed that 

because categorical variables have a low 

cardinality, the probability distribution can be 

created simply using Softmax. Three traditional 

methods are utilized in this work for selecting the 

features and converting them into numerical 

values. The categorical variables must be 

transformed to binary variables using one-hot 

encoding, ordinal encoding, or K-mer counting. 

Ordinal Encoding 
In this approach, each gene expression value must 
be encoded as an ordinal value. For instance, "A, T, 
G, C" is transformed into [0.25, 0.5, 0.75, 1.0]. It 
uses the label encoder technique to transform the 
categorical values into numerical values. The 
float-encoded method converts the integer values 
to floats. The result of this method is an array of 
vectors for the classification task (16). 

One-hot Encoding 
In this approach, values are encoded in the 
vectors and transformed into 2-dimensional 
arrays. For instance, "A, T, G, C" are transformed 
into [1,0,0,0], [0,1,0,0], [0,0,1,0],and  [0,0,0,1]. It 
uses the label encoder technique to convert them 
into numerical values. And it uses an int-encoded 
method to convert the value into 1. This method 
returns two-dimensional array vectors for 
classification purposes (17). 

K-mer Counting 
In this approach, the long DNA sequence is taken 

and broken down into the k-mer word length. It 

simply overlaps the sequence of words. For 

instance, if we use the word length of 4 

(hexamers), “ATGCAAATC” becomes 

‘ATGC’,’TGCA’,’GCAA’,’CAAA’ and soon. To 

transform the list of hexamer words for each of 

the genes into string sentences that may be used 

to construct the Bag of Words model. The count 

vector is used to transform the 4380 gene values 

into the uniform length feature vector on the basis 

of each k-mer word (length 6) in the DNA 

sequence (18). 

Data Augmentation 
The gene expression class labels are unbalanced 

in the DNA sequence. Unbalanced DNA sequence 

datasets have a distribution that is uneven in 

observations; that is, one class label has a large 

number of observations, whereas the other has a 

small number of observations. To predict more 

accurate results, we require that the data be 

balanced. For that, data augmentation is required 

to generate a synthetic sequence based on the 

input sequence. Traditional techniques like data 

re-sampling and the SMOTE technique are utilized 

in this work. The proposed WSEQ-GAN method is 

used for the data augmentation process to 

generate sequence information that is close to the 

original DNA sequence. 

Oversampling (Re-Sampling)  
This method is used to increase or decrease the 

sample size of the minority or majority class. If 

the dataset is imbalanced, then oversampling and 

under sampling techniques are used. In 

oversampling, the data can be replaced by the 

minority class. In under sampling, the data can be 

deleted from the majority class. If we use the 

sampling, some data can be lost, and it cannot 

predict accurate results. It is a traditional 

technique for resampling the data, which leads to 

over fitting and data to resolve the data imbalance 

issue. Figure 3 shows the structure of 

oversampling technique (19). 
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Figure 3: Oversampling Technique 

 

 
Figure 4: SMOTE Technique

 

Synthetic Minority Oversampling 

Technique (SMOTE) 
The SMOTE technique is used to oversample the 

data in the minority class. SMOTE generates new 

instances by using previous information. SMOTE 

evaluates minority class instances and uses k 

nearest neighbors to locate a random nearest 

neighbor, following which an artificial instance is 

generated at random in feature space. Most class 

samples are not considered while generating 

synthetic samples. Figure 4 shows the structure of 

oversampling technique (20). 

Wasserstein Sequence – Generative 

Adversarial Network (WSEQ – GAN) 

The basic GAN approach consists of two 

adversarial networks: a generator (g(x)) and a 

discriminator (d(x)). The synthetic samples are 

created using the generator network. To 

differentiate between the original and fake 

samples using the discriminator network. To 

create the synthetic sequence based on the 

feedback of the discriminator. The generator's 

goal is to minimize cost value, whereas the 

discriminator's is to maximize. Traditional GAN 

methods are used to generate synthetic image 

samples close to the original samples (21). 

Consequently, sequence information is discrete 

because it can be represented by vectors, which 

are continuous real values. The proposed method, 

WSEQ-GAN, is used to create synthetic data 

sequence samples from the GAN network. In SEQ-

GAN, the recurrent neural network is employed in 

the generative model. It maps the input sequence 

x1, x2,... xi into the hidden sequence h1, h2,... hi by 

updating the generator value recursively (22). 

The generator network's inputs are initialized at 

random using the uniform approach. The 

activation functions in the hidden layers are ReLU, 

and the activator for the output layer is softmax. 

The hidden function hi of the hidden layer in the 

generator network is shown in equation 1. The 

output function og of the generator network 

utilizes the softmax layer for sequence 

distribution, as shown in equation 2. 

ℎ𝑖 = 𝑔(ℎ𝑖−1, 𝑥𝑖)  [1]  

𝑜𝑔 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊ℎ𝑖 + 𝑏) [2] 

In SEQ-GAN, the recurrent CNN is employed in the 

discriminator model. First, we adopt a 

bidirectional recurrent structure, which produces 

considerably less noise than a normal window-

based neural network, in order to collect as much 

relevant data as possible when learning word 

representations (23). In the discriminator 

network, the inputs are fed from the generated 

sequence and the real sequence. All hidden layers 

use the ReLU activator; even the output layer uses 

the tanh function. The output function od of the 

discriminator network is shown in equation 3. 

Finally, tanh activation is used to output the 

probability that the input sequence is real. 

𝑜𝑑 = 𝑡𝑎𝑛ℎ(𝑊𝑥𝑖 + 𝑏) [3] 

The SEQ-GAN method is a primary augmentation 

approach because it delivers more consistency. 

SEQ-GAN is used to generate the synthetic 

sequence data based on the distribution of the 

original sequence information. In the genome 

DNA sequence dataset, the real DNA sequence 

information is trained using a parameterized 

generator model gθ to produce the sequence V1:T = 

(v1,...vt,...vT), vt€V, where V is the vocabulary of 
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candidate sequences. At each time step t, the state 

s represents the current created tokens (v1,...vt-1), 

and the action a represents the next token vt to 

select. The model gθ(vt|V1:t-1) is stochastic, but the 

state transition is stable after an action is chosen. 

We also train a parameterized discriminator 

model dɸ to provide suggestions to improve the 

generator's performance. dɸ(V1:T) is a probability 

indicating how likely a sequence V1:T is from the 

real sequence data or not. Based on generator G, 

discriminator D's gradient loss value is 

inconsistent. It also provides the loss value for the 

real/fake sequence for the entire sequence. 

Therefore, the use of traditional SeqGAN for 

sequence generation has been restricted by the 

discrete form of text sequence. The Monte Carlo 

(MC) search algorithm-based realistic sequence 

can be provided by the GAN at each time step. 

Starting with the root node, the MC search 

method builds child nodes for every possible 

combination. Every child node's value is evaluated 

(24). The proposed WSEQ-GAN method generates 

the sequence data based on the Wasserstein loss 

value. In the proposed method, the synthetic 

sequence data is generated based on the realistic 

sequence data for better predictions. The 

recurrent neural network is utilized in the 

generator and discriminator networks instead of 

the CNN for generating the synthetic 

sequence. The traditional SEQ-GAN method 

utilizes Jensen-Shannon divergence. It will locally 

saturate the discriminator, and the gradients will 

vanish. This divergence does not give the 

generator the freedom to generate the data 

samples (i.e., lack of diversity). To address the 

vanishing and exploding gradient problem of back 

propagation through time, we use Long Short-

Term Memory (LSTM) cells to construct the 

update function in the generator network (25). To 

overcome this problem, the Wasserstein distance 

was utilized in the SEQ-GAN approach. The 

objective function of the Wasserstein distance is 

to be more stable and to avoid mode collapse. 

Figure 5 illustrates the generation of synthetic 

sequence samples from the generator gθ and the 

discriminator dɸ, which discriminates between 

real sequence data and fake sequence data. 

  

 
Figure 5: WSEQ-GAN

 

Using the discriminator dφ as a reward function 
allows for continuous updating and iterative 
improvement of the generative model gθ. Once we 
obtain a set of more accurately generated 
sequences using the Wasserstein distance, we will 
train the generator model as shown in equation 4. 
The Wasserstein distance helps to improve the 
stability of learning the parameters and to 
overcome the problem of mode collapse. 

𝑊 = 𝐸𝑥𝜀𝑝𝑑𝑎𝑡𝑎[𝑑ɸ(𝑥)] − 𝐸𝑧𝜀𝑝(𝑧)[𝑑ɸ[𝑔𝜃(𝑧)]]          [4] 

When a new discriminator model is obtained, we 

are prepared to update the generator. The 

proposed strategy is based on improving a 

parameter to directly maximize the long-term 

payoff. Furthermore, WSEQ-GAN provides a 

gradient descent (Wasserstein loss function) that 

is directly related to the veracity and correctness 

of the generated sample data (26, 27). And it is 

one of the most effective and efficient remedies 

for GAN deterioration (loss). As a result, the 

vanishing gradient and mode collapse issues are 

effectively handled. 

Data Classification 
To classify the DNA sequence data using 

traditional classifiers like SVM, KNN, and LSTM. It 

is used to predict the gene class labels in the DNA 

sequence data. The classification task was carried 

out before and after the data augmentation task. 

Support Vector Machine (SVM) 
It is a supervised machine learning model used for 

classification and regression purposes. The basic 

goal of the SVM method is to find a hyper plane 

that distinguishes between data points of various 

classes. The hyper plane is targeted so that the 
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biggest margin separates the classes under 

investigation. The SVM algorithm depicts each 

data item as a point in n-dimensional space (in 

which n is the number of features), with each 

value of the feature representing the value of a 

certain coordinate. SVM can handle data that is 

not linearly separable by utilizing a kernel 

approach to move the data into a higher-

dimensional space where it can be separable 

linearly (28). 

K-Nearest Neighbor (KNN) 
It is a supervised learning model for classification 

and regression tasks. The basic goal of the KNN 

technique is to anticipate the features of a data 

point using the features of its neighbors. It is used 

to select the cluster of the new data point based 

on the distance between each cluster. The KNN 

algorithm estimates the values of newly collected 

data points using "feature similarity". This means 

that the new point is allocated a value based on 

how closely it resembles the training points. It is 

employed to get the necessary precision and 

accuracy for an unknown function (29). 

Long Short-Term Memory (LSTM) 
LSTM is a recurrent neural network that is used to 

process sequence information. It specializes in 

recognizing long-term dependencies, making it 

perfect for sequence prediction tasks. The 

recurrent neural network operations are selective 

read, selective forget, and selective write. The 

selective read captures the current input 

information and previous state information. The 

selective forget keeps only the relevant 

information and the remaining information will 

be deleted. The selective write writes only the 

related information in the particular state. The 

architecture of the LSTM network is shown in 

Figure 6. 
 

Figure 6: Working Mechanism of LSTM Network 
 

The LSTM process is based on three gates: the 

input, output, and forgets gates. In the figure, the 

weight and bias parameters utilized in the input, 

output, and forget gates are Wi, Wf, Wo, bi, bf, and 

bo. The input gate it stores current information 

and previous information in the hidden neuron ht-

1, and the bias value bi is stored in the particular 

state, as represented in equation 5. The forget 

gate ft stores the relevant information and tells 

the state to throw away the irrelevant 

information; it is represented in equation 6. The 

output gate ot provides the information needed to 

activate the final layer, as represented in equation 

7. Equation 8 shows that the hidden information 

is created from the input and the previous time 

step t. Equation 9 shows that we are receiving the 

hidden information from the previous state. 

Equation 10 shows that the output of the RNN 

network is represented as RNNout (ht) (30, 31). 

𝑖𝑡 = 𝜎(𝑊𝑖ℎ𝑡−1 + 𝑈𝑖𝑥𝑡 + 𝑏𝑖) [5] 

𝑓𝑡 = 𝜎(𝑊𝑓ℎ𝑡−1 + 𝑈𝑓𝑥𝑡 + 𝑏𝑓) [6] 

𝑜𝑡 = 𝜎(𝑊𝑜ℎ𝑡−1 + 𝑈𝑜𝑥𝑡 + 𝑏𝑜) [7] 

~𝑠𝑡 = 𝜎(𝑊ℎ𝑡−1 + 𝑈𝑥𝑡 + 𝑏) [8] 

𝑠𝑡 = 𝑓𝑡 ∙ 𝑠𝑡−1 + 𝑖𝑡 ∙ ~𝑠𝑡  [9] 

ℎ𝑡(𝑟𝑛𝑛𝑜𝑢𝑡) = 𝑜𝑡 ∙ +𝜎(𝑠𝑡) [10] 

LSTM is used to predict the class labels in the DNA 

sequence information. To extract the DNA 

structural features using long short-term memory 

to precisely predict enhancement elements in 

genomics data (32). LSTMs are more flexible than 

GRUs since they contain more gates and 

parameters. It also performs complex tasks like 

detecting patterns. Because of their diverse cell 

states, LSTMs are able to store and output 

numerous kinds of data. LSTMs are significantly 

better at dealing with long-term dependence. This 

is related to their ability to retain information 

over long periods of time. LSTMs are quietly less 

sensitive to the vanishing gradient problem (33, 

34). 
 

Results and Discussion 
The proposed WSEQ-GAN model's performance 

has been evaluated using traditional classifiers 

like SVM, KNN, and LSTM. The proposed method 

WSEQ-GAN provides better augmentation results 

than sampling and the SMOTE technique. Table 2 

shows that the prediction on DNA sequence 

samples using different classification techniques 

with sequence augmentation.  The LSTM classifier 
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achieved better classification accuracy, precision, 

recall, and F1-score compared with SVM and KNN. 

The K-mer feature selection technique achieved 

better results compared with ordinal encoding 

and hot encoding. 

 

Table 2: Predictive Results for DNA Sequence 

Class
ifiers 

Feature 
Selection 
Methods 

Augmentati
on 
Techniques 

Accuracy Precision Recall F1-Score 

BA AA BA AA BA AA B     AA 

SVM 

Ordinal 
Encoding 

Sampling 0.71 0.83 0.72 0.84 0.73 0.87 0.72 0.85 

SMOTE 0.83 0.90 0.81 0.87 0.79 0.84 0.80 0.85 

WSEQ-GAN 0.87 0.91 0.89 0.94 0.88 0.93 0.88 0.93 

One-hot 
Encoding 

Sampling 0.81 0.85 0.74 0.88 0.78 0.89 0.76 0.88 

SMOTE 0.83 0.88 0.87 0.91 0.87 0.91 0.87 0.91 

WSEQ-GAN 0.88 0.90 0.89 0.94 0.88 0.93 0.88 0.93 

K-Mer 
Counting 

Sampling 0.91 0.92 0.96 0.98 0.89 0.98 0.92 0.98 

SMOTE 0.93 0.94 0.94 0.95 0.91 0.96 0.92 0.95 

WSEQ-GAN 0.89 0.95 0.88 0.93 0.89 0.94 0.88 0.93 

KNN 

Ordinal 
Encoding 

Sampling 0.73 0.84 0.86 0.87 0.81 0.84 0.83 0.85 

SMOTE 0.75 0.86 0.83 0.86 0.82 0.86 0.82 0.86 

WSEQ-GAN 0.86 0.90 0.87 0.91 0.87 0.93 0.87 0.92 

One-hot 
Encoding 

Sampling 0.81 0.93 0.78 0.87 0.78 0.84 0.76 0.85 

SMOTE 0.83 0.94 0.88 0.97 0.89 0.96 0.90 0.92 

WSEQ-GAN 0.89 0.95 0.89 0.94 0.88 0.93 0.88 0.93 

K-Mer 
Counting 

Sampling 0.82 0.89 0.92 0.93 0.78 0.89 0.83 0.91 

SMOTE 0.84 0.93 0.93 0.94 0.76 0.87 0.83 0.90 

WSEQ-GAN 0.86 0.91 0.89 0.94 0.87 0.93 0.88 0.93 

LSTM 

Ordinal 
Encoding 

Sampling 0.78 0.83 0.81 0.88 0.79 0.85 0.79 0.86 

SMOTE 0.81 0.84 0.83 0.87 0.82 0.89 0.82 0.88 

WSEQ-GAN 0.88 0.94 0.89 0.95 0.89 0.95 0.89 0.95 

One-hot 
Encoding 

Sampling 0.87 0.89 0.84 0.86 0.85 0.88 0.84 0.86 

SMOTE 0.84 0.90 0.86 0.92 0.87 0.93 0.86 0.92 

WSEQ-GAN 0.89 0.95 0.91 0.94 0.91 0.93 0.91 0.93 

K-Mer 
Counting 

Sampling 0.89 0.94 0.89 0.91 0.88 0.89 0.88 0.90 

SMOTE 0.88 0.93 0.91 0.94 0.89 0.93 0.90 0.93 

WSEQ-GAN 0.91 0.98 0.94 0.97 0.93 0.97 0.93 0.97 
 

Table 2 compares the outcomes of the traditional 

classifiers, like SVM, KNN, and LSTM. It also states 

that the before augmentation (BA) and after 

augmentation (AA) of the sequence data. It 

measures the performance of accuracy, precision, 

recall, and F1-Score values. It clearly shows that 

the sequence data after augmentation gives better 

results than before augmentation. The WSEQ-GAN 

method with LSTM can achieve better results 

before and after data augmentation when 

compared to other classification and 

augmentation techniques. The proposed WSEQ-

GAN augmentation technique exceeds both 

sampling and the SMOTE technique by showing 

an average variation of 4.11% in accuracy, 3.72% 

in precision, 5% in recall, and 4.33% in F1-score. 

The machine learning and deep learning 

classifiers are used to classify the sequence data 

before and after augmentation. The LSTM can 

achieve 98% accuracy and 97% precision, recall, 

and F1-score value for augmented data. It also 

achieved 91% accuracy, 94% precision, and 93% 

recall and F1-value for non-augmented data when 

compared to SVM and KNN. 
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Figure 7: Accuracy Value obtained from Original and Augmented Data 

 

Figure 7 depicts the accuracy value obtained after 

augmentation techniques using different 

classifiers and feature selection techniques. The 

proposed WSEQ-GAN method produces better 

results than the sampling and SMOTE techniques. 

The WSEQ-GAN with LSTM classifier and k-mer 

counting technique achieved the highest accuracy 

of 98%. From the existing analysis of the accuracy 

value obtained from previous study (13), it is 

noted that the accuracy outcome difference is 

1.7% in the proposed method. The existing (32) 

DNA sequence classification using ML techniques 

achieved the highest accuracy value of 90.9%; the 

variation in the proposed model is 7.1% 

enhancement. 

 

 
Figure 8: Precision Value Obtained using WSEQ-GAN 

 

 

 
Figure 9: Recall Value Obtained using WSEQ-GAN 
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Figure 10:  F1-Score Value obtained using WSEQ-GAN 
 

Figure 8, 9 and 10 depicts the precision, recall, 

and F1-score values obtained from the proposed 

method, WSEQ-GAN, with different classifiers. The 

proposed augmentation method with an LSTM 

classifier achieved better results for DNA 

sequence data. It achieved 97% precision, recall, 

and F1-Score values. The recall value will ensure 

increasing the dataset size. From the existing 

analysis (12), the recall value is 89%; to compare 

our proposed model, it improved around 8% of 

the recall value. In the existing sequence data 

classification (14), the recall and precision values 

achieved 95%; while comparing our proposed 

method, it achieved around 97% and enhanced 

around 2%. The result shows that the proposed 

WSEQ-GAN method can utilize critical 

applications like cancer for predicting a better 

outcome and to solve the data imbalance problem 

in the sequence data. 
 

Conclusion 
The genome information of all living organism 
molecules is encoded in the DNA sequence. The 
four nucleotides A, T, C, and G are the basic 
building blocks of a DNA sequence. DNA sequence 
analysis is a challenging task for analyzing the 
huge amount of sequence information based on a 
variety of classes. In this research, feature 
selection techniques are applied to convert the 
sequence information into numerical values. The 
proposed method WSEQ-GAN is applied to 
generate a fake sequence similar to the original 
sequence to solve the data imbalance problem. It 
is compared with traditional augmentation 
techniques like sampling and SMOTE. The 
proposed WSEQ-GAN augmentation method 
shows a significant improvement in the results. 
For classification tasks, LSTM is used to classify 
the augmented and non-augmented sequence 
information. It is compared with traditional ML 

approaches like KNN and SVM. The proposed 
WSEQ-GAN along with the LSTM classifier and the 
K-mer feature selection technique achieved better 
classification results. DNA sequencing is useful in 
a variety of fields; it can be mainly dominant in 
the healthcare sector. The sequence information 
is used to identify the specific disease and the 
drug discovery. Sequence information is 
employed in this research to predict accurate 
diseases with better results. Subsequent studies 
employing ML and DL techniques for DNA genome 
sequencing will focus on creating medications for 
particular kinds of samples. 
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