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Abstract 
 

In the realm of computer-aided diagnosis systems designed for lung cancer, accurately segmenting nodules holds vital 
importance. This segmentation process has a vital role in examining the image attributes of lung nodules captured in 
computed tomography scans, ultimately aiding in separation of benign and cancerous nodules. Timely detection of 
these lesions stands as the most effective strategy in combating lung cancer, a disease notorious for its high malignancy 
rates across both genders. Despite numerous deep learning techniques proposed for nodule segmentation, it remains 
challenging due to factors such as nodule characteristics, location, false positives, and the necessity for precise 
boundary detection. The present paper presents an ultra-modern method for lung nodule segmentation in computer 
tomographic images, based on a Generative Adversarial Network. A discriminator and a generator make up the GAN 
model. Our generator, Residual Dilated Attention Gate UNet, serves as the segmentation module, while a discriminator 
is Convolutional Neural Network classifier. To enhance training stability, we utilize the Wasserstein GAN algorithm. We 
compare our hybrid deep learning model, called WGAN-LUNet, both quantitatively and qualitatively with other 
methods that are already in use. We evaluate the model using multiple quantitative criteria. 

Keywords: Deep Learning, Generative Adversarial Network (GAN), Lung nodule, Residual dilated Attention Gate 
UNet, Segmentation. 
 

Introduction  

Lung cancer is second most serious disease which 

cause death and most frequently detected cancer in 

men    (1). Detecting lung nodules early is crucial 

for lowering mortality rates among lung cancer 

patients since the   chances of a successful cure 

drastically diminish once clinical symptoms of lung 

cancer manifest (2). Early diagnosis is one 

approach to significantly increase the survival rate. 

Computed tomography (CT) imaging and X-rays 

are the main non-invasive methods used to 

diagnose lung cancer. Other techniques include 

intrusive diagnostic procedures like biopsies, 

which may harm surrounding tissues. The most 

often utilised test modality for examining and 

diagnosing lung cancer is CT imaging. According to 

NLST Research Team (3) death rate was reduced 

by 20% when using CT imaging in contrast to non-

CT imaging modalities. Nevertheless, due to 

advancements in scanner technology, computed 

tomography (CT) generates a substantial volume of 

images, posing a time-consuming and challenging 

task for radiologists to identify nodules within a 

vast dataset. Figure 1 shows few lung CT images 

with their ground truth and their outline filled with 

colour. Due to the characteristics of lung nodule it 

may diagnose visual analysis imperfect 

subjectively and this task is also complex one. 

Hence, there is need of automated method of lung 

nodule localization and segmentation. Accurate 

segmentation of nodules on lung CT images is 

essential but challenging with traditional methods. 

A deep learning-based method using residual units 

and nested 3D convolutional networks was 

presented by Kido et al., (4). They achieved 

accuracy (DS = 0.845, IoU = 0.738) compared to 

existing deep learning models. A double-path 

network utilizing residual blocks to extract local 

features and rich contextual information from 

nodules to enhance performance was proposed by 

Liu et al., (5). However, their approach used a 

volume of interest fixed, limiting exploration of 

nodules and consequently leading to suboptimal 

performance. Ronneberger et al., (6) developed 

method of segmentation known as U- Net 
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especially for medical image, and U-Net gained 

widespread use. Since then, various improvements 

have been made to U-Net. For example, Tong et al., 

(7) boosted U-Net's effectiveness in nodule 

extraction by using skip connections between its 

encoder-decoder paths. For segmentation of 

objects, a model Badrinarayan et al., (8) proposed 

is SegNet. Similar to UNET, SegNet also has 

encoding and decoding structure except instead of 

convolution transpose it uses unpooling and does 

not have skip connections. Advanced GAN-based 

algorithm WGAN-RDA-UNET proposed by Negi et 

al., (9), for tumor segmentation in breast 

ultrasound images. Based on this study we have 

modified and tuned network for segmentation of 

nodules. 

Building upon the framework proposed by Zhuang 

et al., (10), which introduces a Residual Dilated-

Attention-Gate-UNet, we incorporate it with 

Wasserstein Generative Adversarial Networks 

(WGAN) to create a robust and precise nodule 

segmentation technique. Arjovsky et al., (11) 

proposed WGAN with new loss metric with 

improved stabilization to converge the generator. 

The resulting deep learning model is termed 

WGAN-LUNet. Through our experimentation, we 

demonstrate that adversarial training enhances 

segmentation quality, producing outputs 

comparable to those of experts. 
 

Methodology 
Generative Adversarial Networks (GANs) are a 

breakthrough in machine learning, proposed by 

Goodfellow et al., (12). The   generator   and   

discriminator neural networks   participate   in a 

game in   which generator creates   realistic data 

and discriminator distinguishes between real and 

fake data. 

 

 
Figure 1: Left-Lung CT Images with Nodule, Middle- Ground Truth and Right- Marked 

 Nodules with Ground Truth 
 

 

 
Figure 2: Traditional Generative Adversarial Network 
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Figure 2 illustrate traditional Generative 

Adversarial Network. Iterative process of network 

training as a min-max kind of competitive learning 

among discriminator-D and generator-G is shown 

by Eq. [1]. In the equation, 𝐷(𝑥)– output showing 

probability of 𝑥 being real 𝑃𝑧 - generated data 

distribution 𝑃𝑑𝑎𝑡𝑎- real data and z- Random 

number. 
 

𝑚𝑖𝑛

𝐺

𝑚𝑎𝑥

𝐷
 𝑉(𝐺, 𝐷) =  𝐸𝑥∼𝑃𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔 𝑙𝑜𝑔 𝐷(𝑥) ] + 𝐸𝑧∼𝑃𝑧(𝑧)[𝑙𝑜𝑔 𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧)))) ]               [1] 

 
 

Figure 3: Proposed WGAN-LUNet Architecture 
 

The devised WGAN-LUNet framework leverages 

the aforementioned concept to delineate lung 

nodule in CT images. In this architecture, the 

segmentation model, trained on data, functions as 

the generator, generating segmented regions. 

Simultaneously, an adversarial network discerns 

among generated segmentation outputs and 

ground truth annotations. This training scheme of 

adversarial facilitates refinement of the 

segmentation model's performance, enhancing its 

ability to accurately delineate lung nodules in CT 

scans. In this approach, we utilize the RDA-UNET 

proposed by Zhuang et al., (10) as the 

segmentation generator, while fully connected 

CNN network as the discriminator. This combined 

framework forms the WGAN-LUNet architecture. 

Illustrated in Figure 3, this architecture effectively 

identifies and corrects discrepancies at higher 

semantic levels between the segmented lesion 

outputs generated by the generator and the ground 

truth annotations. Through this corrective 

mechanism, WGAN-LUNet enhances the accuracy 

of segmentation results, closely matching the 

annotations provided by domain experts, thereby 

ensuring high fidelity. 
 

Generator 

As a segmentation model, the generator combines 

Attention Gate (AG) techniques Dilation 

Convolution modules, and Residual Networks in a 

U-Net architecture. Input to this model includes CT 

images of lung nodules along with their 

corresponding ground truth annotations, while the 

output comprises predicted segmentation masks 

generated by RDA-U-Net. Primary aim of the 

generator is to produce synthetic images, 

specifically lesion maps of input CT images, which 

can deceive the discriminator into perceiving them 

as genuine. Illustrated in Figure 4 shows 

architecture of generator network, resembling the 

model described in by Negi et al., (9). It 

encompasses seven residual nets for extracting 

crucial features from CT images, with Reduced-size 

feature maps forwarded to a dilated convolution 

module. The inclusion of dilation convolutions and 

residual units mitigates issues such as fading 

gradients while training and enhances receptive 

field, correspondingly. Following forward pass, the 

output is fed into an up-sampling process 

comprising six residual networks, each featuring 

an individual AG to focus study on nodule region 

apart from non-nodule areas. Ultimately, 

generator outputs a segmentation mask in binary 

via convolution layer in last, indicating 

classification label for every pixel. Eq. [10] is used 

for generators training.  
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Figure 4: Architecture of the Generator 

 

Discriminator 
One of the most pivotal component within the GAN 

framework is discriminator, tasked with 

discerning the authenticity of the presented 

instances. In the proposed architecture, the 

discriminator model adopts a classification 

network design. It comprises a CNN structure with 

twelve convolution layers and unique fully 

connected layer for final classification. Each layer 

of convolutional is accompanied by a leaky ReLU 

activation and layer of max-pooling for down 

sampling, fostering feature extraction. 

Furthermore, batch normalization is integrated to 

regularize and expedite training process, given the 

critical impact of the discriminator's performance 

on efficacy of adversarial loss. 

During training, discriminator receives segmented 

nodule results (fake/false) generated by generator 

and annotations (real, true) as input samples, 

provided in one-hot encoding format. As a result, 

the binary output of the discriminator specifies 

whether the input corresponds to the generated 

segmentation result from the generator or to a 

ground truth from the training set. At an image 

level, the model categorises the authenticity of the 

input, assigning a value of 1 for real and 0 for fake. 

Illustrated in Figure 5, we employ an Adam 

optimizer with a learning rate set to 0.0001 for 

training the discriminator. The chosen loss 

function is BCE (Binary Cross Entropy), which 

effectively manages discrepancies between 

segmentation result and ground truth. To ensure 

improvement in overall accuracy of segmentation 

process this loss function is computed using 

generated segmentation output and ground truths. 

In the Eq. [2] 𝒑 - predicted probability value and 𝒚 

- real value. 

𝐿𝑜𝑠𝑠 =  −(𝑦 ⋅𝑙𝑜𝑔 𝑙𝑜𝑔 (𝑝) + (1 − 𝑦 ) ⋅𝑙𝑜𝑔 𝑙𝑜𝑔 (1 −  𝑝))                                                          [2] 
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Figure 5: Architecture of the Discriminator 

 

LUNet-WGAN 

The unified model is created when the generator 

and discriminator are combined, denoted as 

LUNet-WGAN. Within this integrated framework, 

CT images of lung nodules serve as input, while 

their corresponding ground truth annotations act 

as labels. Initially, a batch of CT images is fed into 

the generator to produce segmentation maps. The 

discriminator then receives segmentation maps 

with the corresponding ground truth labels, 

providing final output for combined model. Figure 

3 shows schematic depiction of this data flow. This 

concise framework outlines the essential steps for 

implementing a GAN-based model in lung nodule 

segmentation, focusing on data preparation, 

architecture, training, evaluation, and model 

refinement. 

Dataset Preparation: Collect a dataset of lung CT 

scans with annotated nodule segmentations.  

Model Architecture: Choose a GAN architecture 

with a U-Net-based generator for detailed feature 

capture and a PatchGAN discriminator for local 

and global evaluation of segmentation quality. 

Training: Train the GAN using paired data. Employ 

a combination of adversarial loss and traditional 

losses like Dice loss or Binary Cross-Entropy to 

ensure accurate segmentation. 

Evaluation: Assess the model using metrics such 

as accuracy, Sensitivity, Specificity, Dice Score, DSC 

loss, IoU, F1-Score, PR-AUC and ROC-AUC to 

evaluate segmentation accuracy and performance. 

Refinement: Fine-tune the GAN by adjusting loss 

weights, learning rates, or integrating additional 

feature extraction networks to enhance 

segmentation quality and reliability. 

The objective function becomes crucial in 

adversarial training. The Wasserstein Generative 

Adversarial Network (WGAN), which selects a 

different objective function than traditional GANs, 

is used in this situation. Compared to traditional 

GANs, WGAN produces a more stable learning 

process by calculating the Wasserstein distance 

among segmentation result and ground truth. 
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Unlike the minimum maximum type competitive 

learning described in Eq. [1], WGAN competitive 

learning between generator-G and discriminator-D 

can be stated as: 

 

𝑚𝑖𝑛

𝐺

𝑚𝑎𝑥

𝐷
 𝑉(𝐺, 𝐷) =  𝐸𝑥∼𝑃𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔 𝑙𝑜𝑔 𝐷(𝑥) ] +  𝐸𝑧∼𝑃𝑧(𝑧)[𝑙𝑜𝑔 𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧)))) ]                              [3] 

 

Where D(x) is discriminator output that indicates 

the likelihood that x is real, 𝑃𝑑𝑎𝑡𝑎 is the real data 

distribution, pz is the distribution of generated 

data, and z is a random number. In this instance, x 

will be the segmented output of the generator, and 

input CT image is z. The discriminator is penalised 

for inaccurate classification by loss function, which 

also penalises deviation between segmented 

results and ground truth.  This guarantees that two 

networks remain stable and do not become 

dominant over one another. WGAN leverages the 

Wasserstein distance, which provides smoother 

gradients and more stable training compared to 

traditional GANs using Jensen-Shannon 

divergence. This stability prevents mode collapse, 

ensuring the generator learns diverse nodule 

shapes and sizes, which is crucial for accurate lung 

nodule segmentation. The Wasserstein distance 

also better handles limited and imbalanced 

datasets, common in medical imaging, enabling 

WGAN to produce clinically meaningful 

segmentations with fewer artifacts and improved 

boundary precision. This makes WGAN a superior 

choice for capturing subtle and complex nodule 

variations. 

Training Scheme 
Main aim of suggested model is to obtain ultra-

modern segmentation outcomes. Initial network 

instability may cause problems with parameter 

modification if generator and discriminator are 

both trained from scratch. To address this issue, 

generator model undergoes partial training 

separately. In the unified model, LUNet-WGAN 

undergoes adversarial training. First, 

discriminator is built and previously trained 

generator is loaded. Subsequently, collective 

model undergoes training. This training process 

iterates with interchanging rounds of generator 

and discriminator. Initially, discriminator is 

trained for single step, followed by parameter 

updates and gradient propagation to compute 

adversarial loss. Then, discriminator is frozen, and 

combined net undergoes one-step training. Both 

models are then evaluated against validation set. 

This iterative cycle continues, reflecting the min-

max concept outlined in Eq. [3]. With each and 

every cycle generator network become more 

accurate and reliable due to adversarial loss's 

training effect.  Generator and discriminator 

parameter updates hinge on the discriminator's 

classification performance. The discriminator's 

parameters are modified if it is unable to 

distinguish between created and real data; if it is 

successful, the generator's parameters are 

adjusted. To achieve precise segmentation and fool 

the discriminator, the generator optimizes its 

parameters by leveraging both the discriminator's 

performance and its own loss. Segmentation 

results for the test data set are shown in Figure 6. 

Evaluation Parameter 

The effectiveness of the suggested method is 

quantitatively assessed using metrics like 

accuracy. It is a fundamental attribute denoting 

correctness and is frequently utilized as the 

primary evaluation criterion. Apart from accuracy 

other evaluation parameters such as Sensitivity, 

Specificity, Precision, F1score, ROC, Dice similarity 

coefficient, PR-AUC.  

Accuracy = 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃+𝑇𝑁+ 𝐹𝑃+𝐹𝑁 
                                     [4] 

Sensitivity = 
𝑇𝑃

𝑇𝑃+𝐹𝑁 
                                                [5] 

Specificity = 
𝑇𝑁

𝑇𝑁+𝐹𝑃 
                                                [6] 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃 
                                                  [7] 

F1score = 2 ×
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) 

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) 
                  [8] 

DSCloss = 1- DSC                                                   [9] 
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DSC = 
2 × 𝑇𝑃

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                           [10] 

IOU = 
|𝐺 ∩ 𝑃| 

|𝐺 ∪ 𝑃| 
                                                             [11] 

 

 

Sensitivity is defined as percentages of real 

positives that are recognised as positive. Whereas 

Specificity is measure of real negatives that are 

recognised as negative. When FP is high, precision 

serves as an effective measurement index. Which is 

proportion of true positive to all positive values. 

When there is an uneven distribution of classes, 

the F1score is utilised. ROC can adjust the 

sensitivity of detection. The PR curve is the area 

under precision recall and AUC. Low false positive 

and false negative rates are indicated by high PR-

AUC value. Ideally it is 1 which means error 

probability is 0. The capability of separating 

affected area from non-affected area is measured 

by ROC-AUC. Higher value of ROC-AUC denotes 

better segmentation. Ideally which is 1.   

The intersection over union, or IoU, is defined as 

the area of overlap between the predicted 

segmentation and the ground truth divided by the 

area of union between them. Range of IoU varies 

from 0 to 1. Value zero- no overlap while one - 

perfectly overlapping segmentation. Dice 

similarity coefficient is used to assess 

segmentation tasks, this metric is most commonly 

utilised. It indicates similarity or match between 

ground truth and segment predicted. Dice loss is 

defined by Eq. [9]. It expected to have value of DSC 

is 1 and DSCloss to be 0. 
 

 

Figure 6: Segmentation Results Column A, B, C, D Shows Original Lung CT Images, Ground Truth, 

Segmented Lung Nodule Region and Scaled Up View of Nodule. Areas Indicated in Cyan Denote Where 

Predicted Segmentation and Ground Truth Intersect, Red Indicates Lesion Area that was Not Anticipated 

to be a Lesion, and Purple Indicates Non-Lesion Regions that the Model Categorized as Lesions.  
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WGAN offers several research benefits for lung 

nodule segmentation: 

Improved Training Stability: Utilizes the 

Wasserstein distance for stable, non-saturating 

gradients, avoiding issues like vanishing gradients 

and unstable training seen in conventional GANs. 

Reduced Mode Collapse: Encourages the 

generation of diverse outputs, capturing complex 

nodule shapes and variations with higher fidelity, 

which is critical for accurate segmentation. 

Better Performance on Limited Data: Handles 

small and imbalanced datasets effectively, 

minimizing overfitting and achieving robust 

performance even with constrained data 

availability. 

Enhanced Boundary Precision: Produces 

sharper and more accurate segmentation 

boundaries, reducing artifacts and improving 

delineation of nodule margins in medical images. 

Integration of Domain Knowledge: Easily 

incorporates medical constraints (e.g., shape 

priors) to ensure clinically relevant segmentation 

results that are interpretable and aligned with 

clinical expectations. 
 

Results and Discussion 
The LIDC dataset (13) is most extensive publicly 

available collection of CT images designed for 

evaluating lung nodule segmentation and 

classification capabilities. It comprises 1,018 cases 

sourced from seven academic institutions and 

eight medical imaging companies worldwide.  

• Total CT Scans: Approximately 1,000 CT 

scans. 

• Total Nodules: Over 1,200 annotated 

nodules across the dataset. 

• Distribution of Nodule Sizes: 

• < 10 mm: ~60% 

• 10-20 mm: ~25% 

• 20-30 mm: ~10% 

• 30 mm: ~5% 

• Nodule Type Distribution: 

• Solid: ~60% 

• Part-Solid: ~25% 

• Ground-Glass: ~15% 

Each case includes clinical thoracic CT images and 

an XML file documenting segmentation results 

from a two-step image annotation process 

conducted by four experienced chest radiologists. 

Slice intervals range from 0.45 mm to 5.0 mm, with 

pulmonary nodule diameters spanning 2.03 mm to 

38.12 mm. Each lung nodule can be segmented by 

up to four radiologists, with annotations focusing 

on nodules 3 mm or larger. 

In this study, nodules larger than 3 mm (totalling 

approximately 893 pulmonary nodules) are 

selected for experimentation, excluding those 

smaller than 3 mm. To address the variability in 

segmentation results among the four radiologists, 

a 50% consensus criterion is applied to establish 

ground truth outlines. From the 893 nodules, 100 

are chosen for performance evaluation. 

 

Table 1: Model Parameter 

Model Total parameters Trainable parameters 

LUNet-WGAN 28816811 24079536 

Generator 24098410 24079536 

Discriminator 4718401 4714433 
 

The proposed model was quantitatively evaluated 

against FCN8s, SegNet, U-Net, and RDAU-net using 

the metrics using Eq. [4] to Eq. [11]. Table 1 shows 

model trainable and non-trainable parameters by 

network. 

 

Table 2: Evaluation Parameter 

Metric FCN8s (14) UNET (6) Segnet (8) 
RDA-UNET 
(9) 

Proposed 
Method 

Accuracy 0.9551 0.9779 0.9756 0.9791 0.9807 

Sensitivity 0.7088 0.8445 0.8369 0.8363 0.8838 

Specificity 0.9688 0.9907 0.9801 0.9926 0.9936 

Precision 0.6127 0.8262 0.8140 0.8863 0.9120 

Loss 0.3527 0.1768 0.1827 0.1530 0.1165 

DSC 0.6472 0.8031 0.8120 0.8461 0.8833 

IOU 0.7013 0.7983 0.8015 0.8053 0.8713 
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F1Score 0.6572 0.8352 0.8255 0.8605 0.8975 

PR-AUC 0.9148 0.9261 0.9538 0.9227 0.9537 

ROC-AUC 0.8061 0.8892 0.8803 0.8551 0.8920 
 

Table 2 shows that our model outperforms the 

others in nearly all metrics on a test data that is 

20% the size of training data. The proposed 

method demonstrates superior performance 

across multiple evaluation metrics compared to 

traditional models such as FCN8s, UNET, Segnet, 

and RDA-UNET. It achieves the highest accuracy 

0.9807, indicating its strong capability in correctly 

classifying both positive and negative cases. The 

sensitivity of the proposed model 0.8838 is also the 

highest among all methods, showcasing its 

effectiveness in detecting true positive cases and 

identifying lung nodules. In terms of specificity, the 

proposed method excels with a value of 0.9936, 

demonstrating its proficiency in accurately 

recognizing true negatives and minimizing false 

positives. The precision of 0.9120 further reflects 

the model’s ability to distinguish true positives 

from negative cases, ensuring a lower rate of false 

positives. 

Additionally, the proposed method has the lowest 

loss value 0.1165, highlighting its better 

optimization and convergence during training. It 

achieves the highest Dice Similarity Coefficient 

(DSC) of 0.8833, which signifies a superior overlap 

between the predicted and actual segmentation 

regions, as well as the highest Intersection over 

Union (IoU) score of 0.8713, demonstrating 

precise segmentation results with minimal errors. 

The proposed method also shows the highest F1 

score 0.8975, indicating a balanced performance in 

terms of precision and recall. Furthermore, the 

model achieves a PR-AUC of 0.9537, reflecting a 

high precision-recall balance and is comparable to 

other top-performing models. Although the ROC-

AUC of the proposed method 0.8920 is slightly 

lower than UNET 0.8892, it still shows a good 

trade-off between sensitivity and specificity. 

Overall, the proposed WGAN-LUNet model 

consistently outperforms other models across all 

key metrics, including accuracy, sensitivity, 

specificity, precision, and DSC. These results 

suggest that WGAN-LUNet offers enhanced 

segmentation capabilities, making it a promising 

tool for clinical applications in lung nodule analysis 

and diagnostic support. 
 

 
Figure 7: Comparison of Proposed Method Using Accuracy (Top Left), Sensitivity (Top Right), Specificity 

(Bottom Left) and Precision (Bottom Right) 
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Figure 8: Comparison of Proposed Method Using Loss (Top Left), DSC (Top Right), IOU (Middle Left), F-1 

Score (Middle Right), PR-AUC (Bottom Left) and ROC- AUC (Bottom Right) 
 

Figure 7 illustrates comparison of proposed 

method using metrics accuracy, sensitivity, 

specificity and precision while Figure 8 shows 

comparison of proposed method using loss, DSC, 

IoU, F-1 Score, Pr-AUC, and RoC-AUC with four 

segmentation methods respectively. It is clear that 

in segmentation tasks, U-Net designs perform 

better than FCNs and SegNet performs better than 

UNet. The ROC and PR curves for the WGAN on the 

testing dataset are displayed in Figure 9 and Figure 

10. From comparison it is very clear that WGAN 

increases segmentation outcomes. 
 

 
Figure 9: Precision-Recall Curve with AUC = 0.9537 of LUNet-WGAN 
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Figure 10: ROC Curve with AUC = 0.8920 of LUNet-WGAN 

 

Generative Adversarial Networks (GANs) are 

increasingly used in image segmentation, 

improving performance despite challenges like 

non-convergence and gradient vanishing. This 

study introduces a novel WGAN-based approach 

for nodule segmentation in lung CT images, 

utilizing adversarial training to produce accurate 

nodule masks. Our method surpasses current 

techniques, enhancing precision by 3-4%, 

MeanIOU by 7-8%, and dice score by 4-5%. Hyper 

parameter tuning is crucial for optimal 

performance. Future research will extend this 

model to various medical imaging datasets to boost 

robustness. 

Computational Complexity and Training 

Limitations of WGAN-LUNet: WGAN-LUNet, 

while offering improved segmentation 

performance, comes with increased computational 

complexity and longer training times compared to 

traditional models like U-Net. Following 

limitations occurred during training of WGAN-

LUNet Model. 

• Requires additional computations for 

Wasserstein distance calculation. 

• Necessitates multiple discriminator updates for 

each generator update. 

• Prolonged training durations due to the 

iterative nature of the adversarial updates. 

• Higher memory consumption to accommodate 

the increased number of parameters and 

operations. 

• Superior stability and reduced mode collapse 

compared to conventional models. 

• Enhanced segmentation accuracy, particularly 

for complex nodule structures and variations 

that are challenging for traditional methods like 

U-Net. 

 

Conclusion 
The WGAN-LUNet model represents a substantial 

leap forward in lung nodule segmentation, 

overcoming the limitations associated with 

conventional methods. By utilizing the stability 

and robustness of Wasserstein GANs, WGAN-

LUNet significantly improves segmentation 

accuracy and precision, especially when handling 

complex lung nodules in scenarios with limited 

and imbalanced datasets. The integration of this 

model into clinical workflows could streamline 

diagnostic processes, offering radiologists an 

advanced tool for accurate identification and 

analysis of lung nodules. Although the model 

entails higher computational complexity and 

longer training times, its ability to deliver superior 

segmentation quality and minimize artifacts 

makes it a valuable addition to medical imaging 

applications. Future efforts should focus on 

optimizing computational efficiency, enhancing 

the model's interpretability, and conducting 

extensive clinical validations to ensure its 

reliability and practical use in healthcare settings. 

Moreover, the development of web-based and 

mobile applications integrated into current clinical 

workflows could further enhance radiologists' 

efficiency, ultimately leading to improved patient 

outcomes and more effective treatment planning. 

To integrate WGAN-LUNet into clinical practice, 

the model must be optimized for seamless 

integration with existing radiology workflows and 

imaging software. This includes ensuring 

compatibility with various CT formats and 

maintaining interpretability of the results. By 

automating nodule segmentation and highlighting 

suspicious regions, WGAN-LUNet can support 

radiologists in providing second opinions and 

reducing diagnostic time, thereby enhancing 
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decision-making accuracy without disrupting 

routine clinical procedures. 
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