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Abstract 
 

In a confirmatory investigation, researchers are mandated to employ covariance-based structural equation modeling 
(CB-SEM). A crucial assumption inherent in CB-SEM is the multivariate normality of the data. However, real-world data 
rarely conforms to a perfectly normal distribution. To address this, unweighted least squares (ULS) is specifically 
tailored for handling non-normally distributed data in SEM. Nonetheless, ULS often yields unsatisfactory outcomes, 
such as negative or boundary estimates of unique variances, as it accounts for measurement errors in observed 
variables. In the realm of SEM, unique variance manifests as disturbance, arising from unreliability or measurement 
error and reliable variation in items indicating latent causes that are not explicitly known. One common cause of 
improper solutions in SEM is non-convergence, wherein the estimation fails to reach a minimum fit function. To address 
this challenge, the present study proposes the regularization of the ULS estimator to rectify inadequacies in model fit. 
Multivariate non-normally distributed data, with predetermined population parameters and sample sizes, were 
generated through Pro-Active Monte Carlo simulation and subsequently analyzed using the R Programming 
Environment. The results reveal the effectiveness of the regularized ULS in enhancing model fit indices such as the 
Comparative Fit Index (CFI), Tucker-Lewis Index (TLI), Root Mean Square Error of Approximation (RMSEA), and 
Standardized Root Mean Square Residual (SRMR). 
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Introduction 

The second-generation statistical analysis method, 

known as structural equation modeling (SEM), is 

proficient in examining the complex 

interconnections among multiple variables within 

a model (1–4). Past study has demonstrated that 

SEM outperforms ordinary least squares (OLS) in 

achieving the best-fit model for estimation (4). 

SEM is capable of handling both normal and non-

normal data, with the unweighted least square 

(ULS) estimator specifically designed for non-

normal data (5). Given that real-life data often 

deviate from normality (6, 7), this paper presents 

comparable findings of various estimation 

methods in covariance-based SEM (CB-SEM), 

including maximum likelihood (ML), ULS, and 

regularized ULS, for analyzing the inter-

relationships of variables. ULS frequently leads to 

improper solutions, such as negative or boundary 

estimates of unique variances, due to its 

consideration of measurement errors in observed 

variables (8). In SEM, unique variance is depicted 

as disturbance, involving random error (arising 

from unreliability or measurement error) and 

reliable variation in the item (indicating unknown 

latent causes). Improper solutions in SEM are 

partially attributed to non-convergence, where the 

estimation fails to reach a minimum fit function. 

Hence, regularization techniques were introduced 

to overcome this issue. Regularization is defined as 

the condition of having been rendered regular in 

layman’s terms. It is frequently used in the area of 

mathematics to describe the inclusion of 

information to resolve an improper problem. 

Methods of regularization are frequently used in 

fields including statistics and machine learning. 

Multicollinearity and overfitting are prevalent in 

most applications. There has been a vast amount of 

work in statistics dealing with regularization in a 

wide spectrum of problems (9–15). According to 

scholars, regularization is the class of techniques 

needed to modify maximum likelihood to give 

reasonable answers in unstable situations such as 

negative or boundary estimates of unique 

variances (11).  
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The negative or boundary estimates of unique 

variances means that during estimation, the 

computed value for the unique variances 

(variances of individual variables) might either be 

negative or reach the boundary constraints of the 

estimation procedure. Hence, previous study 

extended the use of regularization to structural 

equation modeling, namely, regularized structural 

equation modeling (RegSEM) (14). RegSEM 

penalizes certain parameters, such as factor 

loadings and path coefficients. The aim is to 

develop models that are simpler and easier to 

comprehend.  

Through the inclusion of penalties on particular 

parameters within a SEM model, researchers gain 

significant flexibility in simplifying model 

complexity, addressing poor fitting models, and 

improving loading estimation accuracy. Several 

regularization studies have been emphasized and 

utilized in SEM (16–19). Arruda and Bentler 

introduced regularized Generalized Least Squares 

(GLS), which employs a maximum posteriori 

(MAP) covariance matrix for the regularized 

weight matrix (9). The objective of the study is to 

evaluate the performance of the ML, GLS, RGLS, 

and rGLS test statistics in a confirmatory factor 

model across different sample sizes. The results 

showed that at all sample sizes below 500, 

regularized GLS outperformed ML and GLS. 

However, in larger samples, their performance was 

equivalent. As a result, this study suggests that 

regularization using alternative estimators in SEM 

to nonnormal data should be used more widely. 

This study only focused on regularizing only the 

weight matrix in GLS. Recent study introduced 

regularized PLSc, a ridge-type regularization to be 

included into consistent partial least squares 

(PLSc). By including the regularization parameter 

in the estimation, PLSc and regularization 

parameter were integrated with the goal of 

addressing potential multicollinearity issues. 

When there is significant multicollinearity, 

regularized PLSc should be considered (20). There 

is general agreement that regularized parameter 

estimates are, on average, more accurate than their 

nonregularized least-squares counterparts. 

Additionally, at lower sample sizes, the 

regularization impact is more noticeable.  

Recently, a study by Robitzsch A explores different 

aspects of implementing regularized single-group 

and multiple-group structural equation modeling 

(SEM) (19). The finding indicates that, in certain 

cases, using a fixed regularization parameter is 

better than choosing an optimal one based on the 

Bayesian information criterion for estimating 

structural parameters. Additionally, it compares 

widely used penalty functions in regularized SEM 

across various R packages with a recently 

proposed penalty function in Mplus software. The 

study offers practical guidance for implementing 

regularized SEM in future software applications. 

However, past methods place their focus heavily 

on the application of RegSEM method to different 

estimators such as ML using different model and 

data conditions. Therefore, our objective is to 

assess the performance of regularized ULS, as well 

as ML and ULS, across various SEM fit indices (e.g., 

CFI, TLI, RMSEA, and SRMR). 
 

Methodology  

Simulation Research Framework 
In this study, we employed Monte Carlo Markov 

Chain (MCMC) simulation procedures to generate 

non-normally distributed data, adhering to the 

standard approach with specified skewness and 

kurtosis value of 2 and 7, respectively (21). Three 

distinct population models were constructed, each 

featuring specific specifications of true indicator 

loadings. These models consisted of four latent 

constructs, with uniform true indicator loadings of 

0.7, 0.8, and 0.9, along with a correlation of 0.7 for 

each pair (22). To mitigate underestimation 

concerns associated with small sample sizes, high 

indicator loadings were established. The 

relationships between constructs in the population 

were consistently characterized as homogeneous. 

Sample sizes of 50, 100, 200, and 500 were 

generated for the purpose of evaluating 

consistency, aligning with the common sample 

sizes employed in path modeling (22, 23). 

Following that, the nonnormal data were 

generated based on specified population models 

across four sample sizes (n= 50, 100, 200 and 500) 

to gain insights into the robustness, efficiency, and 

generalizability of the methods under different 

conditions. It allows for a more comprehensive 

understanding of how changes in sample size 

impact the validity and reliability of simulation 

results. To obtain consistent outcomes for the 

analyses, 1,000 replications of each sample size is 

conducted, resulting in the generation of 3 models 

x 4 sample sizes x 1,000 replications = 12,000 
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datasets. The estimation of indicator loadings was 

performed using Maximum Likelihood (ML), 

Unweighted Least Squares (ULS), and regularized 

ULS methods. For regularization, we chose the 

optimal value of the regularization parameter, λ 

using cross-validation (24). The simulation 

process and subsequent data analysis for 

structural equation modeling (SEM) were carried 

out using the R statistical programming 

environment. Various packages, including “psych”, 

“MASS”, “foreign”, “mvrnonnorm”, and “semTools” 

were employed to generate multivariate non-

normal data. Following this, SEM and regularized 

SEM analyses were conducted using the “lavaan” 

and “regsem” packages, respectively. Figure 1, 

Figure 2, and Figure 3 visually present the 

population models that underwent testing with 

maximum likelihood (ML), unweighted least 

square (ULS), and regularized ULS adapted from 

(22). For the estimation purposes, IBM SPSS AMOS 

software was utilized, incorporating both 

maximum likelihood (ML) and unweighted least 

square (ULS) estimators. In the context of 

regularized unweighted least squares estimation, 

penalties were applied to the coefficients derived 

from ULS. 
 

 
Figure 1: Reflective Measurement Model 1 

 

 
Figure 2: Reflective Measurement Model 2 
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Figure 3: Reflective Measurement Model 3 

 

Estimation Methods 
Maximum Likelihood (ML) 

In projecting the fit and coefficients within CB-

SEM, we opted for the elegant approach of 

maximum likelihood (ML) estimation. ML 

leverages derivatives with finesse to minimize the 

following fit function: 

 

 

 

[1] 

 
Where the covariance matrix of the theoretical 

model is denoted as , and the sample covariance 

matrix is defined as S. For a square matrix ,  

implies the determinant of ; defines the 

sum of the diagonal elements of ; and  is 

the total numbers of manifest variables indicators. 

The fitting function in ML is derived under the 

assumption that the observed variables exhibit a 

normal distribution. 

Unweighted Least Squares (ULS) 

In light of the non-normal distribution in the data 

used for this study, we appraised the performance 

of the unweighted least square (ULS). As outlined 

by Shi and Maydeu-Olivares (25), the ULS fit 

function can be formulated as: 

                                                   [2]                                     

 

 

Here,  represents the disparity 

between the population threshold and polychoric 

correlations. 

Regularized Unweighted Least Squares 

The ULS estimation method in SEM has certain 

disadvantages, particularly related to conditioning 

problems. To address these issues, several 

solutions involving regularization have been 

proposed in the statistical literature. 

Regularization techniques aim to improve the 

stability and accuracy of parameter estimation. 

One regularization approach is shrinkage, which 

dates back to the work of Stein C (26). Shrinkage 

methods have been implemented in SEM, as seen 

in a study (27). This method involves penalizing 

specific parameters in the model to achieve 

regularization. Regularized structural equation 

modeling (RegSEM), which applies regularization 

techniques to SEM was introduced previously (14). 

RegSEM penalizes certain parameters in the model 

to encourage stability and improve estimation 

accuracy. In general, regularization techniques aim 

to bring stability and conformity to problematic 

situations. This help to provide reasonable 

answers and address instability issues in the 

estimation of SEM parameters. The goal of RegSEM 

is to improve the accuracy and stability of SEM 

estimates, particularly in situations where the 

sample size is small, or the model is complex (28). 

The distinction between RegSEM and other forms 

of regularization comes in terms of the 

specification of which parameters to penalize. 

RegSEM allows the regularization of parameters 

from general SEM models. RegSEM involves adding 
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a penalty term to the likelihood function that 

encourages the model to have smaller coefficients 

and a simpler structure. This helps to improve the 

generalization of the model. One advantage of 

RegSEM in estimating parameters is that 

regularization can help to prevent the occurrence 

of negative variances or other implausible 

parameter estimates that can arise in the presence 

of Heywood cases (18). By adding a penalty term 

to the likelihood function, regularization can 

constrain the parameter estimates to reasonable 

ranges and avoid extreme values that can result 

from overfitting or other issues in the model. 

Moreover, regularization can help to improve the 

estimation precision of the parameters in the 

presence of Heywood cases by reducing the impact 

of small or noisy data points on the estimates. This 

can lead to more stable and accurate estimates, 

even when the data is complex or challenging to 

model. Overall, RegSEM can be a valuable tool in 

dealing with Heywood cases and other challenges 

in structural equation modeling and can help to 

improve the reliability and interpretability of the 

parameter estimates. A regularized extension into 

ULS, which incorporates ridge-type regularization 

by minimizing: 

                          
 

 

In this context, λ denotes the regularization 

parameter (or tuning parameter), p is the number 

of covariables used in the model,  is the 

coefficient for . The initial summation signifies 

the ULS fit function that we aim to minimize, while 

the second summation illustrates the penalty 

imposed on the coefficients. A certain degree of 

shrinkage is identified where the advantages of 

reducing variance surpass the trade-off of 

increased bias, ultimately yielding more accurate 

estimates. The tuning parameter plays a crucial 

role in regulating the impact on bias and variance. 

With an increase in the tuning parameter, the effect 

diminishes, resulting in a reduction of variance. 

However, beyond a certain point, the model starts 

losing essential properties, leading to an 

introduction of bias and causing the model to 

underfit. Therefore, the choice of the tuning 

parameter should be made judiciously, taking into 

account the delicate balance between bias and 

variance. To select the optimal value of λ, a range 

of values, typically ranging from 20 to 100, is 

considered, and the model is run for each penalty 

value (23). The initial penalty value is set to zero, 

and then it is progressively increased. This 

approach is adopted due to the likelihood of 

encountering estimation issues in SEMs involving 

latent variables. If estimation problems arise, the 

testing process can be stopped. The RegSEM 

method is implemented as a user-friendly package 

called ‘regsem’ in the R programming language 

(28, 29). This package simplifies the process of 

fitting a model using the ‘lavaan’ package and 

subsequently applying regularization using 

‘regsem’. 

Fitness Indexes 
Comparative Fit Index (CFI) 

The Comparative Fit Index (CFI), introduced 

previously (30), evaluates the enhancement in the 

fit of the hypothesized model in comparison to a 

baseline model. The population CFI is articulated 

as follows:  

 
 

Where    and    signify the fit function for the 

postulated model (i.e., the hypothesized model) 

and the standard model (i.e., the baseline model) in 

which all observed variables are considered to be 

uncorrelated. Acceptable cut-off values for CFI 

typically fall above 0.90, signifying a good fit. 

Tucker-Lewis Index (TLI) 

The Tucker-Lewis Index (TLI) functions as an 

incremental fit index. The Non-Normed Fit Index 

(NNFI), also known as TLI, was introduced to 

mitigate the influence of sample size on the 

Normed Fit Index's drawback. TLI is calculated 

using the formula presented below (31): 

 
 

Where,   is the number of degree of 

freedom for the target model. The acceptable cut-

off values for TLI is TLI > 0.90.  

Root Mean Square Error of Approximation 

(RMSEA) 

The population Root Mean Square Error of 

Approximation (RMSEA) gauges the discrepancy 

attributed to approximation per degree of freedom 

and is calculated as follows: 

[3] 

[4] 

[5] 
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where 𝐹0 implies the difference between the data-

generating process and the fitted model.   refers 

to the degrees of freedom of the proposed model. 

The established threshold for an acceptable 

RMSEA is set at <0.08. 

Standardized Root Mean Square Residual 

(SRMR) 

The Standardized Root Mean Square Residual 

(SRMR) serves as an indicator of approximate fit. 

The population SRMR is defined as: 

 

 

 

In this context,  represents the vector of the 

population standardized residual covariances and 

 denotes the number of unique 

components in the residual covariance 

(correlation) matrix. The SRMR serves as a 

standardized effect size measure that reflects 

model misfit, approximately representing the 

average standardized residual covariance (32). 

According to the recommendation in a previous 

study (33), an SRMR value of ≤ 0.08 is considered 

an appropriate threshold for assessing model fit. 
 

Results 

Table 1, Table 2 and Table 3 summarize the 

performance of ML, ULS, and regularized ULS 

based on fitness indexes: CFI, TLI, RMSEA, and 

SRMR across the three pre-specified models. 

 

Table 1: Model 1 Fit Indexes (True Loadings Set at 0.7) 

Note: Values in bold denote unacceptable fit – calculation was based on IBM-SPSS AMOS and R Programming software. The threshold 
for CFI ≥ 0.9, TLI ≥ 0.9, RMSEA < 0.08, SRMR < 0.08.  
 

The assessment of model fit, gauged through CFI, 

TLI, RMSEA, and SRMR measures for ML, ULS, and 

regularized ULS in Model 1, is encapsulated in 

Table 1. Notably, at a small sample size (n = 50), the 

CFI and TLI measures for Model 1 were deemed 

unfit when compared to ULS and regularized ULS. 

Nevertheless, with an upswing in the sample size, 

ML’s CFI and TLI measures reached commendable 

levels, hinting at the sample size’s impact on these 

metrics when ML was applied. Conversely, both 

RMSEA and SRMR measures for all estimators 

were deemed unsatisfactory at a smaller sample 

size (n = 50). In summary, the outcomes from 

Model 1 highlight that, when dealing with non-

normal data, ULS and regularized ULS consistently 

surpass ML, showcasing superior model fit, as 

indicated by CFI and TLI measures across varying 

sample sizes (50, 100, 200, and 500). 
 

 

 

 

Sample 
size 

Fitness Indexes Estimation methods 

ML ULS Regularized ULS 
50 CFI .806 .987 .974 

TLI .762 .984 .968 

RMSEA .123 .087 .124 

SRMR .086 .084 .086 

100 CFI .931 .993 .992 

TLI .915 .991 .990 

RMSEA .068 .059 .069 

SRMR .062 .064 .063 

200 CFI .944 .991 .992 

TLI .931 .989 .990 

RMSEA .054 .057 .054 

SRMR .051 .050 .052 

500 CFI .975 .993 .995 

TLI .969 .992 .994 

RMSEA .030 .036 .030 

SRMR .034 .033 .035 

[6] 

[7] 
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Table 2: Model 2 Fit Indexes (True Loadings Set at 0.8) 

Sample 
size 

Fitness Indexes Estimation methods 

ML ULS Regularized ULS 

50 CFI .976 1.000 .995 

TLI .971 1.041 .993 

RMSEA .037 .000 .037 

SRMR .075 .074 .076 

100 CFI .963 1.000 .989 

TLI .954 1.030 .986 

RMSEA .043 .000 .043 

SRMR .061 .059 .060 

200 CFI .988 1.000 .997 

TLI .986 1.011 .996 

RMSEA .024 .000 .025 

SRMR .042 .040 .042 

500 CFI .978 1.000 .995 

TLI .973 1.000 .994 

RMSEA .034 .004 .031 

SRMR .031 .031 .032 

Note: Values in bold denote unacceptable fit – calculation was based on IBM-SPSS AMOS and R Programming software. The threshold 

for CFI ≥ 0.9, TLI ≥ 0.9, RMSEA < 0.08, SRMR < 0.08. 
 

Table 2 outlines the performances of ML, ULS, and 

regularized ULS for Model 2. The results reveal 

that, in non-normal conditions, the ULS estimator 

yielded an overfit model across all sample sizes 

(50, 100, 200, and 500) based on CFI, TLI, and 

RMSEA measures. This implies that regularized 

ULS demonstrated a superior fit compared to both 

ULS and ML for Model 2, where every item loading 

underlying the respective constructs was set at 0.8. 

Intriguingly, ML also exhibited the ability to 

generate a better fit model than ULS when non-

normal data were utilized. When comparing ML 

and regularized ULS using CFI and TLI measures, 

regularized ULS exhibited superior performance 

than ML. However, in terms of the SRMR measure, 

all models displayed comparable fit values. 

Consequently, we deduce that when analyzing 

non-normal data with the Model 2 specification, 

regularized ULS emerges as the method producing 

the most optimal fit model. 
 

Table 3: Model 3 Fit Indexes (True Loadings Set at 0.9) 

Sample 
Size 

Fitness Indexes Estimation Methods 

ML ULS Regularized ULS 

50 CFI .848 1.000 .966 

TLI .814 1.015 .958 

RMSEA .116 .000 .117 

SRMR .089 .081 .086 

100 CFI .949 1.000 .985 

TLI .938 1.021 .981 

RMSEA .061 .000 .062 

SRMR .063 .058 .062 

200 CFI .974 1.000 .994 

TLI .968 1.007 .992 

RMSEA .046 .000 .046 

SRMR .043 .039 .043 
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Note: Values in bold denote unacceptable fit – calculation was based on IBM-SPSS AMOS and R Programming software. The threshold 

for CFI ≥ 0.9, TLI ≥ 0.9, RMSEA < 0.08, SRMR < 0.08. 
 

 

The findings for Model 3 are depicted in Table 3. 

Among the three estimators, generalized ULS 

emerged as the optimal estimator, consistently 

achieving model fitness within acceptable 

threshold values across all sample sizes (50, 100, 

200, and 500). Similar to Model 1, Model 3 was 

deemed unfit when ML was applied to a small 

sample size (n = 50). However, there was an 

improvement in fitness indexes with an increase in 

sample size under ML. Similar to Model 2, the ULS 

estimator resulted in an overfit model, evident 

from CFI, TLI, and RMSEA measures across all 

sample sizes (50, 100, 200, and 500) under non-

normal conditions. This underscores the 

effectiveness of regularized ULS in enhancing 

model fit, particularly when dealing with non-

normal data and extremely large indicator 

loadings (0.9). 
 

Discussion 
This study assessed the effect of regularization to 

SEM on fitness indexes such as CFI, TLI, RMSEA and 

SRMR. The application of regularization to SEM 

demonstrated that regularization could improve 

the fit of the model. In this study, we considered 

different types of models to generate non-normal 

and complete data using simulations with various 

sample sizes. As stated, the true loadings of 

indicators for the three models are homogenous 

between 0.7 to 0.9. In summary, the outcomes from 

Model 1 indicate that, across all sample sizes (50, 

100, 200, and 500), both ULS and regularized ULS 

consistently produced a superior fit compared to 

ML, as measured by CFI and TLI. For Model 2, 

where all item loadings were set at 0.8, regularized 

ULS demonstrated improved fit over ULS and ML. 

Notably, ULS resulted in overfit model estimations 

across all sample sizes based on CFI, TLI, and 

RMSEA measures. Similarly, ULS yielded overfit 

models across various sample sizes. The findings 

suggest that regularized ULS effectively enhances 

model fit, particularly when dealing with non-

normal data and substantial indicator loadings 

(e.g., 0.8 and 0.9). Conversely, ML rendered the 

model unfit, particularly at a small sample size (n = 

50). This underscores the significant influence of 

sample size on the application of regularization in 

SEM, as emphasized in previous research (14, 18).  

This study offers a proficient solution to counter 

the issue of inadequate fit performance observed 

in ULS (8). Furthermore, it provides valuable 

insights into the wider application of 

regularization in Structural Equation Modeling 

(SEM), particularly in situations where 

regularization is acknowledged to outperform the 

traditional estimator in the context of CB-SEM. In 

situations where the data is non-normal and the 

true loading is large (e.g., 0.8 and 0.9), researchers 

should be aware that the model fit indexes can 

change significantly with the use of the 

regularization method. Our findings underscore 

the potential advantages of integrating 

regularization with alternative estimators in 

Structural Equation Modeling (SEM), moving 

beyond the common reliance on Maximum 

Likelihood (ML) estimation. This is particularly 

relevant when dealing with non-normally 

distributed data, as indicated by the insights in 

past studies (18, 22). We infer that when 

simulating data with true loadings set at 0.8 and 

0.9, conducting the study using regularized ULS as 

an alternative fitting function in CB-SEM could 

offer a viable and beneficial approach. We propose 

the optimal value for the regularization parameter, 

λ, as 0.01, determined through cross-validation, 

effectively addressing the overfitting concern in 

the context of this study. The regularization 

method consistently demonstrated improved 

model fit compared to the non-regularized ULS. 

The choice of lambda plays a crucial role in 

determining the extent of penalization for 

parameter estimation, thereby enhancing the fit 

function (22, 23, 28). It is important to note that 

the comparison of ML, ULS, and regularized ULS 

Sample 
Size 

Fitness Indexes Estimation Methods 

ML ULS Regularized ULS 

500 CFI .989 1.000 .998 

TLI .986 1.002 .997 

RMSEA .030 .000 .030 

SRMR .026 .025 .026 
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applications across the three predefined models 

may not be universally applicable to all models. 

The conclusions drawn are specific to the models 

examined within the scope of this study. For a 

more comprehensive understanding, it is 

advisable to apply the proposed method to a 

diverse set of applications involving more complex 

models. 

In conclusion, we investigated how the inclusion of 

regularization in the structural equation modeling 

(SEM) estimator affects different fitness indexes in 

this simulation study. Our results demonstrate that 

applying regularization to the SEM estimator leads 

to notable improvements in model fit, particularly 

in situations involving non-normal data and higher 

indicator loadings (e.g., 0.8 and 0.9) for simulated 

data (34). Given the prevalent non-normality in 

real-world data, the implications of this study offer 

valuable insights for policymakers and researchers 

aiming to enhance the accuracy of estimations 

when analyzing the inter-relationship of variables. 
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