
International Research Journal of Multidisciplinary Scope (IRJMS), 2024; 5(4):730-745

Review Article | ISSN (O): 2582-631X DOI: 10.47857/irjms.2024.v05i04.01355

A Comprehensive Review of Reinforcement Learning
Applications in Gaming

Ashish Kumar, Jasleen Kaur Bains*
Department of Computer Science and Applications, Panjab University, Chandigarh, India. *Corresponding Author’s Email:
jasleen@pu.ac.in

Abstract
Reinforcement learning is one of the most popular models for building agents that deal with the real world but are
not distinctly told which actions to perform. In the context of gaming, the application of reinforcement learning thus
spans many different categories, from classic arcade games to modern simulations. The aim of this review paper is to
present a comprehensive review of reinforcement learning in gaming, its core methods or algorithms, and the results
obtained. This paper first lays the groundwork by discussing the basics of reinforcement learning, among which are
agents, environments, rewards, and policies. Then we discussed the mathematical framework of reinforcement
learning, the Markov decision process, and the Bellman equation. Thereafter, it discusses specific reinforcement
learning algorithms that have been successfully implemented in video games. A variety of algorithms has been
adapted from the field of reinforcement learning and has shown huge success, like Q-learning, deep Q-networks, and
policy gradients. Then we compare the different games and algorithms associated with them and their outcomes.
There are also some major challenges with RL in video games, such as computational complexity, environment design,
and many more. Finally, the conclusion and future aspects of applications of reinforcement learning in video games
are discussed.

Keywords: Artificial Intelligence, Gaming, Machine Learning, Reinforcement Learning, Video Game.

Introduction
Artificial intelligence (AI) is a technology enabling

computers and machines to mimic human

intelligence and problem-solving skills. John

McCarthy coined the term ‘Artificial Intelligence’

in 1956, but the foundational principles were

initially developed in 1950 by Alan Turing (1). AI

finds numerous applications, with video games

being a prominent domain. It is very common for

video games to have intelligent agents, which

makes them more entertaining and challenging

for their players. The early Atari games, such as

Pong and Space Invaders, were among the first to

feature AI. Video games provide a safe and cost-

effective environment for AI research due to their

controllable virtual settings (2). Reinforcement

learning (RL) is one of the best ways to implement

AI in video games. Arthur Samuel is the first

person to use RL to develop a program to play

checkers that learns from its experience (3). In

recent years, RL has been applied to Google Deep

Mind’s Alpha Go and Open AI Five. Alpha Go

achieved a historic victory against the world

champion Go player, Lee Sedol (4), while Open AI

Five secured consecutive wins against Dota 2

World Champions in 2019 (5). The objective of

this study is to provide an overview of the

application of RL techniques within the context of

video games and to identify the significant

challenges associated with their integration. This

study aims to lay the groundwork for future

research by offering a fundamental understanding

of RL principles and their applications in gaming.

The paper offers an in-depth examination of

various RL techniques, including Q-learning, deep

Q-networks, and policy gradients, and their

implementation in video games. Understanding

these techniques will reveal how RL algorithms

are designed to address complex problems in

dynamic and interactive environments. This

paper has discussed several RL techniques,

including Q-learning, deep Q-networks, policy

gradients, and applications to video games. If

understood, these techniques give the reader

insight into the design of RL algorithms to solve

complicated issues in dynamic and interactive

environments. This paper discusses the

This is an Open Access article distributed under the terms of the Creative Commons Attribution CC BY

license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution,

and reproduction in any medium, provided the original work is properly cited.

(Received 18th June 2024; Accepted 21st October 2024; Published 30th October 2024)

mailto:jasleen@pu.ac.in

Ashish and Jasleen, Vol 5 ǀ Issue 4

731

fundamentals of RL and popular algorithms

applied in video games. It examines several games

in which popular RL techniques were used,

providing examples of their outcomes. Further it

addresses the challenges faced by RL techniques.

Finally, the paper concludes with a discussion of

future research directions and potential

developments. Over the past few decades, RL has

advanced significantly, particularly in its

application to video games. A pivotal work in this

field was Sutton and Barto's 1998 publication,

Reinforcement Learning: An Introduction (6),

which introduced the temporal difference (TD)

learning method. The TD approach integrated

ideas from supervised learning and dynamic

programming. It allowed an agent to learn

predictions of future rewards without requiring a

model of the environment. TD learning's success

paved the way for further breakthroughs in RL; it

promised great potential in both theoretical and

practical domains, including gaming. Building

upon this foundation, one of the most used model-

free RL algorithms introduced was Q-learning by

Watkins and Dayan in 1992 (7), The off-policy

nature of Q-learning provides the ability to update

policies relative to the optimal actions instead of

the ones that have been taken by the agent,

making Q-learning very appropriate for complex

gaming environments. The versatility of Q-

learning was later demonstrated in its application

to classic arcade games such as Snake and Pong,

where agents learned the optimal action in a trial-

and-error process. 2013 saw the development of

Deep Q-Networks (DQN) by Mnih et al. (8), where

DQN represented a gigantic step forward in

bringing together Q-learning and deep neural

networks. Thereby, RL algorithms were given the

capacity to deal with high-dimensional state

spaces that usually appear in Atari games. DQN

agents demonstrated superhuman performance in

several games; the shift marked the importance of

dominance in AI-based game strategies by RL.

Notably, DQN addressed the stability issues faced

by traditional Q-learning through techniques like

experience replay and target networks,

significantly enhancing the training efficiency.

Another turning point for RL in gaming

application was reached in 2016 by Alpha Go (9),

developed by Google's Deep Mind. Alpha Go

conquered human Go professionals by using

Monte Carlo tree search paired with deep RL

techniques, demonstrating that RL can be

powerful enough to solve highly strategic and

complex tasks in real-time, multiplayer

environments. This achievement became the

milestone for future breakthroughs in other

games, such as Dota 2 and StarCraft II, where RL

agents like OpenAI Five and AlphaStar, beat

human champions (10, 11). These developments

highlight RL’s evolution from early theoretical

frameworks to practical, high-impact applications

in gaming. Since policy gradient methods and

Proximal Policy Optimization (PPO, 12), have

been proposed, RL has found its application in the

most sophisticated strategies involving real-time

strategy games, offering a flexible and scalable

manner of handling dynamic multi-agent

environments. Sutton and Barto (6), in their

foundational work in 1998, Watkins and Dayan in

1992 (7), Mnih et al., in 2013 (8), as well as Silver

et al. in 2016 (13), introduced core algorithms

currently inherent to RL and proved the former's

applicability to playing games. Each successive

development has made RL capable of dealing with

more sophisticated game environments-from the

simple, dumb arcade games early on to the rather

sophisticated real-time strategy games that

demand a high sense of decision-making ability

and flexibility. These works are the backbone of

success in RL gaming, and their on-going influence

continues to mold the application of RL in modern

video game AI.

Comparison of RL with other

Approaches to AI in Gaming
As artificial intelligence keeps developing and

getting better for games, many approaches must

be used, including supervised learning,

unsupervised learning, and reinforcement

learning, each with different advantages and

disadvantages. Supervised and unsupervised

learning are based on predefined data, but RL

stands out because it learns by continuous trial

and error. This section addresses how RL

compares to these AI approaches, showing how

interaction-based learning particularly suits the

complexity of game environments and their many

dynamic changes (Figure 1).

Ashish and Jasleen, Vol 5 ǀ Issue 4

732

Figure 1: Brief History of Reinforcement Learning

Supervised Learning
Supervised learning builds models on labelled

data. In this, the output to be obtained given an

input is known in advance (14). Error is

minimized, and that's how it learns. This really

proves to be efficient with tasks such as

classification, object detection, and pattern

recognition -that is frequently used in the game to

recognize avatars of the player or NPCs. For

example, such facial recognition in games can rely

on supervised learning in order to determine the

difference between the player and the NPC

(Figure 2). However, supervised learning is not

sufficient in changing game environments that

demand real-time decisions as it cannot adapt

without retraining to new cases or situations. In

games like StarCraft II (10), where strategies

evolve dynamically, supervised learning becomes

impractical because it depends on fixed datasets.

If the game's strategy changes, the model must be

retrained, making supervised learning less

adaptable compared to RL, which continuously

updates its strategy through interaction with the

game environment.

Figure 2: Supervised Learning

Figure 3: Unsupervised Learning

Ashish and Jasleen, Vol 5 ǀ Issue 4

733

Unsupervised Learning
Unsupervised learning deals with unlabelled data,

clustering similar data points to discover hidden

patterns or structures (14). It is very handy for

tasks like procedural content generation, in which

game levels or worlds are created without any

human intervention being as direct as possible, so

that there is variability and uniqueness in

gameplay. For example, the procedurally

generated worlds in No Man's Sky (15) are

produced through techniques of unsupervised

learning. The algorithm can generate infinite

worlds based on the patterns in the underlying

data, giving a broad and varied player experience.

But, in real-time, interactive games that entail

decision-making, unsupervised learning is limited

because it does not contain a reward-based

feedback loop. In contrast, RL continuously

increases the performance of the agents as it

learns from rewards and penalties. In scenarios

involving gameplay where the environmental and

strategic conditions change, this makes it

relatively more potent (Figure 3).

Reinforcement Learning
Reinforcement learning differs fundamentally

from other AI approaches in that agents can learn,

interacting with their environment to adapt their

strategies over time (16). All agents receive

rewards or penalties depending on actions taken,

which helps agents update their strategies to

maximize cumulative rewards. Because of this

property, reinforcement learning is suited to

complex, dynamic environments where real-time

adaptations are necessary. For example, AlphaGo

(13) was an RL agent that learned to play Go

within millions of simulations and kept improving

through trial and error. Furthermore, since

supervised learning depends on labelled data, an

RL-trained agent such as AlphaGo managed to

come up with innovative strategies not explicitly

programmed or trained against particular data.

This learning process through trials and errors

together with the real-time environment in RL

provides the latter a competitive advantage in AI

methods used for gaming applications (Figure 4).

Figure 4: Reinforcement Learning

Reinforcement learning thus has the power to

adapt to changing environments, making it very

effective in games nowadays. Supervised and

unsupervised learning play their roles especially

in classification and content generation, but it

lacks real-time adaptability in complex games.

The dynamic process of RL, based on rewards and

penalties, makes it efficient in complex interactive

games where strategy evolves continuously.

Fundamentals of RL
Reinforcement Learning is an ML technique that

allows an agent to learn in an uncharted

environment through trial and error, using

feedback from its actions. The main components

of an RL system are the agent and the

environment, the state, the action, the policy, a

reward signal, the value function and the model

(6, 17). Figure 5 shows the working of RL. Agent:

The person being trained. In GTA, the agent would

be either a player or an AI-controlled character.

Environment: this refers to the surroundings

where the agent is located. It is the area in which

the agent performs some actions and gets

rewards or punishment as feedback for positive

and negative behaviour. In GTA, the environment

is the virtual city and its inhabitants. The state

represents the current situation in the

environment. In GTA, it could be the agent’s

position, nearby cars, available missions and the

current wanted level. Action refers to the decision

or move that the agent can make. In GTA, actions

could include walking, running, driving, shooting,

or starting a mission. The policy is the way an

agent acts within the environment and learns to

behave in the environment under given

circumstances. In simple words, the policy maps

the states of action. The policy can be a function

Ashish and Jasleen, Vol 5 ǀ Issue 4

734

or even some lookup table. The policy is

considered as a core of RL agents because it alone

is enough to determine agents’ behaviour (6, 17,

18). In GTA, if the agent's state indicates that a

mission is nearby, then the policy might prioritize

moving towards the mission starting point. A

reward signal indicates how favourable or

unfavourable an event is. It defines the goal of a

RL problem. At every event, the environment

sends a signal to the agent based on the actions

performed in that particular event. That signal is

known as a reward signal. The agent’s only

objective is to maximize the total reward in the

long run. In a biological system, the reward signal

is similar to the experience of pleasure or pain. If

some action generates low or negative reward

then the policy will shift to some other action

which will generate positive or non-negative

reward. In GTA, rewards can be money earned

from missions, reputation points, or even

penalties like a wanted level for breaking the law.

The value function is the future reward that an

agent would be able to get by executing any

particular action in a certain state. Thus, it tells

the evaluation of the states and, according to this

evaluation, the optimal action. In simple terms,

the value function estimates in what state the

agent will be given and how good a certain state is

in terms of future rewards. In GTA, for example,

proximity to a mission start would be of high

value due to the possible reward from the

successful mission completion. In everyday terms,

rewards are like pleasure and pain, while value

corresponds to how pleased or dissatisfied you

are in some particular state.

Figure 5: Working of RL

The final component of RL systems is a model of

the environment. This model allows us to mimic

the behaviour of the environment or predict how

the environment will respond to certain actions.

However, the model is an optional component of

the RL system. In GTA, a model could simulate a

driving scenario to predict the outcome of actions

such as turning at an intersection or braking,

which might help the agent evade the police or

complete a mission quickly. In RL, an agent needs

to learn to take appropriate actions in unknown

environments in order to maximize the overall

return. For this, a highly formal mathematical

framework is needed to model the interaction

between the agent and the environment. In doing

so, an appropriate formulation and solution of RL

problems can be realized in the context of a

Markov Decision Process.

Markov Decision Process
Markov decision Process (MDP) is a mathematical

framework that is used to study decision-making

processes between an agent and its environment,

where outcomes depend on the actions taken and

some element of randomness. MDP aims at

providing the mapping of best actions for each

condition of an environment. MDP is based on

Markovian property, which only takes into

account the present state and ignores information

from the past state. Future state prediction is

entirely unaffected by the prior state. The physical

objects in the surroundings remain unchanged,

and the laws of physics remain constant (19).

Chess is one of the games where the rules don't

change and you don't have to recall your previous

moves to play the next one. The five-tuple (S, A, P,

R, ϒ) can be used to characterize the Markov

decision process (20).

States(S)

The S represents all possible states of the system.

A state is a detailed description of the

environment at a given time. In GTA, a state can

be described by the current location of the player,

their health level, the current amount of money

they have, and the presence of non-player

characters (NPCs) around them.

Ashish and Jasleen, Vol 5 ǀ Issue 4

735

Actions

The set A represents all the possible actions that

the decision-maker or agent can take. An action

influences the transition from one state to

another. In GTA, actions could be driving to a new

location, engaging in combat, interacting with

NPCs, and performing missions.

Transition Probability (P)

This function describes the probability of

transitioning from one state to another based on

the action performed by the agent. It is denoted as

P (s, a, s’), where s is the current state, a is the

action performed, and s’ is the next state. In GTA,

if the player chooses to drive from point A to point

B, then the transition function represents the

probability of arriving at point B without dying or

encountering police. Figure 6 depicts the state

transition diagram.

Reward Function (R)

This specifies the reward received by the agent

after transitioning from the state (s) to (s’) due to

action a. In GTA, this reward could be money

earned from a mission, losing health or earning a

bad reputation for not completing objectives.

Discount factor (ϒ)

The discount factor signifies the difference

between the present and future returns, implying

that the present reward holds greater significance

than the future reward. In GTA, the discount

factor might prioritize immediate rewards such as

quickly gaining money and health over long-term

incentives.

Figure 6: State Transition Diagram

Bellman Equation
When it comes to solving MDP and RL problems,

Richard Bellman's renowned Bellman equation,

which he created in 1953, is of utmost

significance. The value function can be computed

using the Bellman equation. In RL, the Bellman

equation connects the value of a state to the

expected value of future states (21). It

decomposes the value of a state into immediate

rewards and the discounted value of successor

states under a certain policy. The Bellman

equations involve two types of value functions:

State Value Function (Vπ (s)): This represents

the expected return (total discounted rewards)

starting from the state (s) and following a

particular policy (π).

Action Value Function (Qπ (s, a)): This

represents the expected return starting from state

(s), taking action (a), and thereafter following a

policy (π).

Bellman equation for State Value function (7):

𝑉𝜋(𝑠) = ∑
𝑎 𝜋(𝑠|𝑎) ∑

𝑠′ 𝑃𝑠𝑠′
𝑎 [𝑟(𝑠, 𝑎) + 𝛾𝑉𝜋(𝑠′)] [1]

Vπ(s) in equation 1 represents the State value

function, where (s) is the state and the policy (π).

π (s|a) is the probability of taking action (a) in the

state (s) under policy (π). Pass’ is the probability of

transitioning from state (s) to state (s’) after

taking action (a). r (s,a) is the immediate reward.

ϒ is the discount factor which balances the

importance of immediate and future rewards.

Bellman equation for Action Value function (19):

𝑄𝜋(𝑠, 𝑎) = ∑
𝑠′ 𝑃𝑠𝑠′

𝑎 [𝑟(𝑠, 𝑎) + 𝛾 ∑
𝑎′ 𝜋(𝑠′) 𝑄𝜋(𝑠′, 𝑎′)] [2]

Qπ(s,a) in equation 2 represents the action value

function, where (s) is state and (a). Qπ(s’,a’)

represents the action value function, where (s’) is

state and (a’). π (s’|a’) is the probability of taking

action (a’) in state (s’) under policy (π). Pass’ is the

probability of transitioning to state (s’) from state

(s) after taking action (a). r (s,a) is the immediate

reward. ϒ is the discount factor which balances

the importance of immediate and future rewards.

RL Algorithms Used in Video Games

RL algorithms have recently opened up a new era

of artificial intelligence in video games. While

current approaches to classical AI in games

involve the creation of predefined behaviors and

rules, reinforcement learning allows game

characters and agents to learn and adapt by

interacting with their surroundings. This dynamic

technique ensures not only realism but also

unpredictability among non-player characters

(NPCs), leading to even more complex and

demanding game aspects. This section looks at the

use of RL algorithms in video games. But before

that, let us understand some key terms:

Ashish and Jasleen, Vol 5 ǀ Issue 4

736

• Model-Free RL

Model-Free RL algorithm relies not on a model

of the environment; instead, it learns a policy

or value function directly from interactions

with the environment. Two well-known kinds

of model-free algorithms are Q-learning and

policy gradient methods.

• Model-Based RL

Model-based RL algorithms, on the other hand,

typically obtain the dynamics. They require

learning a model of the dynamic environment,

predicting the next state and the reward given

the present state and action. The agent uses

this model to plan its actions, which are the

predictions of future states, and selects

behaviours in order to maximize expected

rewards. One example is Dyna-Q, a class of

algorithms that combines direct learning with

model-based planning.

• On-policy

Algorithms evaluate an existing policy through

and through. They demand that the policy

needs to be updated according to the actions

that have been taken by the agent. For

example, the SARSA algorithm updates the

action-value function according to the actions

of the current policy, thus making sure

learning is on par with the experience of the

agent.

• Off-policy

Algorithms involve analysing or improving

policies other than those used to generate

data. This allows higher flexibility: they can

even learn from activities falling outside the

present policy. A classic example of an off-

policy strategy is Q-learning, where the agent

learns about the optimal policy even while

pursuing a different policy for exploration.

Q-learning
Q-learning is a model-free, off-policy approach for

learning long-term optimal behaviour (7). It

focuses on developing a policy that maximizes

long-term benefits by learning to react optimally

in an environment. Despite its simplicity, Q-

learning is effective in complicated environments

with discrete state and action spaces, making it

useful in a variety of disciplines, including gaming,

robotics, and finance (22). This algorithm learns

the action value function rather than the state

value function (23), which is defined as

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡+1 + 𝛾 𝑎′∈𝐴𝑄(𝑠𝑡+1, 𝑎′) − 𝑄(𝑠𝑡, 𝑎𝑡)]

 [3]

In equation 3, the learned action-value function Q

is directly approximated to the optimal action-

value function, regardless of the policy used (23).

Q-learning, a reinforcement learning algorithm

has been used in several video games. One

noteworthy example is the classic game Snake.

In the Snake game, the player controls a snake

that moves around the screen to eat food

(represented by dots, 24). The snake's length

increases as it consumes food. The snake's goal is

to avoid hitting the walls or its own tail. Q-

learning teaches the snake agent how to play the

game by rewarding good behaviour and

penalizing bad behaviour. The agent discovers

which activities, like approaching food, result in

favourable rewards and which actions, such as

leaving the screen, result in undesirable

outcomes. At each step of the game, the agent

chooses the action with the highest expected

reward based on its current state.

State-Action-Reward-State-Action
The goal of the state-action-reward-state-action

(SARSA) on-policy method is to tackle RL

problems by teaching a machine learning model a

new Markov decision process policy (25).

According to the algorithm, the agent takes an

action (A) in the current state (S), receives a

reward (R), moves on to the next state (S1), and

then takes another action (A1) in S1.

Consequently, the abbreviation SARSA is

represented by the tuple (S, A, R, S1, A1). The

algorithm is known as an "on-policy" algorithm

since it modifies the policy in response to

activities (6). In comparison to Q-learning, the

SARSA algorithm is a model-free algorithm, and in

on-policy learning, it evaluates and follows a

single policy. SARSA may converge slower than Q-

learning since it updates based on policy actions

rather than optimal actions. SARSA is an on-policy

reinforcement learning algorithm that balances

exploration and exploitation. One of the best

games where SARSA is applied is the Cartpole

Game (26). In the Cartpole game from OpenAI

Gym, the goal is to balance a pole on a moving

cart. The agent must learn to control the cart’s

movements to prevent the pole from falling. Using

Deep SARSA (a variant of SARSA with deep neural

networks), the agent learns an effective policy for

balancing the pole. The trained agent becomes

Ashish and Jasleen, Vol 5 ǀ Issue 4

737

proficient at maintaining balance and preventing

the pole from falling off. This demonstrates how

SARSA can be used to optimize decision-making in

a simple game like Cartpole.

Monte Carlo Method
Monte Carlo methods in RL do not assume

complete knowledge of the model or the

environment. Rather, it learns from its own

experiences as it interacts with the environment

either real or simulated. With the simulation of an

environment, some model information is needed

but quite less detailed than in methods like

dynamic programming because, under dynamic

programming, one needs the probabilities of

every transition. Monte Carlo methods depend on

averaging complete returns and are usually

employed in episodic tasks. This implies that the

value of a state is estimated, and the policy is

updated only after an episode is completed. Just

like all the other RL methods, we shall first look at

the prediction problem for the Monte Carlo

methods and then see how it can be used in

solving the control problem. Prediction is nothing

but estimating the values of states, which

indicates how much useful it is for the agent to be

in a particular state. The higher the value of a

state, the better it is for the agent. And the control

problem is that of finding the best policies. A

specific Tic Tac Toe game instance is being played

by an AI based on the Monte Carlo method (27),

which is playing random variations of the game in

the background. For each game outcome, the AI

scores the outcome. Then, it picks the move that

most influences the selection for achieving a win.

In this way, the Monte Carlo method enables the

AI to learn the most effective strategy without an

exhaustive search. It is efficient and effective.

Policy Gradient Algorithm
It aims to search for the best policy that will

maximize the expected return by directly

modifying policies through policy iteration. Such

algorithms are referred to as model-free because

they do not assume prior knowledge about the

model of the environment. In simpler terms, we

do not know the environmental dynamics or the

transition probabilities (28). This can be seen as

the likelihood of moving to the next state (S') by

performing an action from the current state (S).

Transition probability and policy are sometimes

mixed up. Distribution of actions provided to

states is known as policy (π). Put simply, the

policy determines how the agent acts, while the

transition probability explains how the

environment changes, which is often unknown in

real-world scenarios. The Policy Gradient

algorithm has been applied to different video

games to improve decision-making by training the

agents to learn optimal policies. Pong, of course, is

a classic video game where the player controls a

paddle in order to hit a ball back and forth. Policy

Gradient was used in the Pong game optimization

by researchers (29). The way the agent played

Pong was learned from the agent, which was

being controlled by the algorithm by modifying

the movements of its paddle. This kind of research

is also done by researchers in various other

ATARI games, including Breakout, Pong, and

Space Invaders. The trained agents have produced

very good results and have outperformed human

players in some games. For example, in Breakout,

the agent learns how to break the bricks

efficiently in order to maximize its score. The

result underlines how powerful PG methods are

to master complex video games.

Deep Q-Network Algorithm
The Deep Q-Network algorithm integrates

training deep neural networks with RL. DQN

operates directly on raw visual input, as seen in

the Atari 2600 Games (8, 25). DQN, developed by

DeepMind researchers, integrate deep neural

networks with RL algorithms to provide a ground-

breaking answer to the complex challenges posed

by high-dimensional state and action spaces. This

invention has significantly advanced the

profession by enabling efficient learning and

decision-making under complex contexts (18).

DQN overcomes the basic instability problem

using two different practices, which include

experience replay and target network. The

fundamental idea used by DQN is to implement a

deep neural network to take over the Q-function.

The DQN algorithm implemented and optimized

the action-value functions using a deep neural

network-based approach. Below is an outline of

the working procedure:

Step 1: State Representation

An input function that assigns a suitable

numerical representation to the current state of

the environment, either raw pixel values or

previously pre-processed characteristics. The

deep neural network should be of a particular

design, most often a convolutional neural network

Ashish and Jasleen, Vol 5 ǀ Issue 4

738

(CNN) that takes up the state of nature as input

and outputs the action values for all possible

actions that can be taken. This is termed the

neural network architecture.

Step 2: Experience Replay

A replay memory buffer is a collection of the

experiences of the agent, which consists of states,

actions, rewards, and the next states from which

the tuple is formed.

Step 3: The Q-Learning Update

Use small-sized mini-batches of experienced

samples drawn from the replay memory buffer to

update the weights of the neural network. A loss

function for the Bellman equation between the

goal and projected action values minimize the loss

to achieve the update.

Step 4: Exploration and Exploitation

Actions to be taken either stochastically to

explore the surroundings or greedily based on the

current policy to achieve the balance between

exploration and exploitation

Step 5: Target Network

Use an alternative target network of the same

architecture for the design implemented to

stabilize the learning. Update the target network

periodically by replacing the weight of the main

network with an equivalent copy of the weights.

Now repeat all the steps: engage with the

environment, collect data, update the network,

and iteratively improve the policy until

convergence. Researchers used DQN to play the

classic arcade game, Pac-Man (18). The agent

learned to negotiate the maze, evade ghosts, and

gather pellets. After training, the DQN agent was

able to reach human performance levels, thus

proving that it indeed could learn the best policies

for playing Pac-Man. It even devised gameplay

strategies that topped human baselines. A number

of other Atari 2600 games, from Space Invaders to

Breakout, have also had DQN applied to them.

RL in Video Games
In game development, on the other hand, RL has

been greatly hyped for its promising game AI

revolution and potential betterment in the player

experience. This paper discusses the core RL

methods, focusing on their application to video

games. A detailed overview of RL fundamentals,

including agents, environments, policies, and

rewards, is provided in the ‘Fundamentals of RL’

section. This section tabulates and compares

these implementations in a selection of video

games as shown in Table 1.

Table 1: Shows an Overview of Selected Video Games, Their Associated RL Algorithms, and the Results

from Running the RL Algorithms

Category Game RL

Algorithm

Speed Accuracy Complexit

y

Outcomes

Strategy and Board

Games

AlphaG

o

 (9, 13)

MCTS with

deep neural

networks

High

computatio

nal cost,

slow

training

Superhuma

n-level

accuracy

High;

requires

sophisticat

ed strategy

and

planning

Defeated

top human

Go players,

showcasing

superior

strategic

thinking and

learning

from self-

play.

 Chess

(9)

AlphaZero

(Combines

MCTS and

Deep

Learning)

Moderate to

high speed

with self-

play

Superhuma

n-level

accuracy

Moderate;

strategic

planning

and

foresight

AlphaZero

defeated top

human and

computer

players,

mastering

the game

through

self-play.

Ashish and Jasleen, Vol 5 ǀ Issue 4

739

Real-Time Strategy

Games

Dota 2

(11)

Proximal

Policy

Optimizatio

n (PPO)

Moderate

training

speed

High

accuracy in

real-time

strategy

Very high;

multi-

agent

coordinati

on

OpenAI Five

defeated

professional

human

teams,

demonstrati

ng advanced

real-time

strategy and

coordinatio

n.

StarCraf

t II (10)

Deep Q-

Learning,

Supervised

Learning

Slow

training due

to complex

environmen

t

High

accuracy

with

strategic

depth

Very high;

long-term

planning

required

AlphaStar

outperform

ed top

human

players,

managing

complex

long-term

strategies in

a real-time

setting.

Classic Arcade Games

Ms. Pac-

Man

(30)

Monte Carlo

Tree Search

(MCTS)

Moderate

speed due

to tree

search

High

accuracy

in-game

navigation

Moderate;

non-

determinis

tic

elements

Achieved

high scores

by

effectively

managing

non-

deterministi

c elements.

Atari

Games

(8, 14)

Deep Q-

Network

(DQN)

Moderate

training

speed

High

accuracy

across

multiple

games

Moderate;

varying

game

mechanics

Achieved

human-level

performanc

e across

various

Atari games

by learning

game

mechanics

autonomous

ly.

Platformer Games

Super

Mario

Bros.

(31)

NEAT

(Neuro

Evolution of

Augmenting

Topologies)

Slow due to

the

evolutionar

y process

High

accuracy in

level

completion

High;

requires

evolving

neural

network

topology

Developed

specialized

models

capable of

autonomous

ly

navigating

complex

game levels.

Ashish and Jasleen, Vol 5 ǀ Issue 4

740

First-Person Shooter

(FPS) Games

Quake

III

Arena

(Captur

e the

Flag)

(32)

Deep Q-

Learning

Moderate

training

speed

High

accuracy in

multi-agent

scenarios

High; 3D

environme

nt and

team

strategy

Agents

developed

by

DeepMind

exhibited

human-level

performanc

e in team-

based first-

person

shooter

games.

Multi-Agent and

Cooperative/Competi

tive Games

FIFA

Soccer

(33)

Multi-Agent

RL,

Imitation

Learning

Moderate

training

speed

High

accuracy in

teamwork

and tactics

High;

team-

based

tactics and

strategies

Agents

developed

by Google

Research

demonstrat

ed advanced

playmaking

abilities and

teamwork.

League

of

Legend

s (34)

Hierarchical

RL

Slow due to

multi-level

decision-

making

High

potential

accuracy in

team

strategies

Very high;

complex

team

strategies

and roles

Research in

progress,

with the

potential to

manage

complex

team

strategies

and role-

specific

actions.

Simulation and

Robotics

Minecra

ft (35)

Asynchrono

us

Advantage

Actor-Critic

(A3C)

Moderate to

high speed

with parallel

training

High

accuracy in

task

execution

High;

open-

ended

environme

nt and

tasks

Trained

agents to

perform

complex

tasks and

navigate

open-ended

environmen

ts.

Gran

Turism

o (36)

Soft Actor-

Critic (SAC)

Moderate to

high-speed

High

accuracy in

driving

simulation

High;

continuous

action

spaces

AI developed

by Sony AI

achieved

expert-level

performance

in racing,

handling

complex car

dynamics.

Ashish and Jasleen, Vol 5 ǀ Issue 4

741

Figure 7: Accuracy and Complexity Levels of RL Algorithms in Various Games

Figure 7 shows how different RL algorithms

perform in terms of accuracy and complexity

when used in a range of video games. The X-axis

displays every game with its RL algorithm, with

the Y-axis indicating the levels of accuracy and

complexity. The accuracy of RL algorithms is

shown by the blue bars, and their complexity

levels are represented by the red bars. Games

such as AlphaGo and Chess achieved accuracy at a

superhuman level by utilizing reinforcement

learning algorithms, which demand high levels of

strategic planning and precision. In contrast, Ms.

Pac-Man and Atari Games were successful due to

their high precision despite being moderately

complex, requiring navigation through

predictable environments. In games such as Dota

2 and StarCraft II, the level of complexity ranges

from high to very high due to the importance of

real-time strategy and coordination, yet the RL

algorithms still achieved high accuracy despite

the intricate gameplay. Super Mario Bros. and

FIFA Soccer achieved high accuracy with

moderate complexity, while Minecraft and Gran

Turismo showed high accuracy with very high

complexity because of their open-ended

environments and continuous action spaces. This

comparison aids in grasping how well RL

algorithms perform in various gaming

environments.

Games Benefiting from Reinforcement

Learning
Considering the discussion made above on the key

reinforcement learning algorithms applied in

game playing, it is important to notice that

different game types pose unique challenges and

have had success differently with the application

of RL. RL has been applied with great success

across a wide spectrum of game genres going as

far as turn-based strategy games requiring long-

term planning to real-time environments

demanding fast responses to decisions.

Categorizing these games according to the nature

of their interaction with RL would thus let us

better understand how reinforcement learning

has revolutionized each genre and driven new

developments in game AI.

Strategy Games

Turn-based strategy games, in particularly Chess

and Go (9), rely greatly on experience learning

since planning needs to be rather long-term. The

RL techniques, applied here, strive greatly for

optimal actions by analysing the great number of

possible future scenarios. AlphaGo (4) of

DeepMind used MCTS with the help of RL to beat

human go champions. The algorithm continuously

learnt the best strategy from millions of simulated

games by using reward signals to learn the best

moves.

Ashish and Jasleen, Vol 5 ǀ Issue 4

742

Real-Time Strategy Games

Real-Time Strategy (RTS) games like StarCraft II

and Dota 2 require agents to make real-time

decisions involving resource management, multi-

agent coordination, and long-term strategies.

Example: AlphaStar is an RL-based agent that was

trained by Deep Q-Learning and policy gradients

for superhuman performance in StarCraft II (10).

Here, the agent will first learn from the human

replays, then perfect its strategy through self-play.

Open AI Five is another example where the RL

agent defeated professional human players at

real-time decision-making in the multi-player

online game, Dota 2 (11).

Arcade Games

First experiments with RL algorithms were done

on less complex games like Pong and Breakout.

These games made good bench marks for early

work in RL because their state spaces are small

and the rewards are well defined. Example: DQN

of Mnih et al. (8) achieved superhuman

performance in Atari 2600 games, including Pong

and Breakout, by learning to maximize rewards

through trial and error, outperforming human

players.

First-Person Shooter (FPS) games

The challenge, then, is much greater for RL agents

with FPS games such as Quake III Arena because it

involves the need for navigation through 3D

environments, teamwork, and instantaneous

actions (37).

Example: In Quake III’s Capture the Flag mode,

DeepMind trained RL agents to collaborate with

teammates and defeat opponents in a multiplayer

environment. This involved mastering strategies

such as defence, offense, and resource

management, all learned autonomously through

reinforcement learning. Platformer Games Classic

platformer examples, such as Super Mario Bros,

require running through levels full of obstacles

and enemies. RL agents optimized in such

environments are trained to optimize movement

and actions to complete levels efficiently.

Example: The NEAT algorithm, Neuroevolutionary

of Augmenting Topologies, evolved RL agents to

play Super Mario Bros: it modified the neural

network of the agent based on performance; thus,

it learned policies on how it should be navigating

through complex levels.

Additional Metrics and Challenges in

RL for Games
Even though game scores and win rates have been

fairly popular criteria to measure the

performance of reinforcement learning agents,

such metrics alone do not allow one to hold a

comprehensive assessment of how an agent

performs, especially in more intricate gaming

environments. Other important aspects, including

involvement by players, computational efficiency,

and generalization across various game contexts,

are critical determinants of overall effectiveness

for RL algorithms in video games. These

additional metrics offer deeper insights into how

well RL agents perform beyond achieving high

scores, focusing instead on their adaptability,

efficiency, and interaction with human players.

Furthermore, the challenges encountered by RL

agents, such as computational complexity,

environment design, generalization, and real-time

constraints, demonstrate the obstacles that need

to be overcome for RL to reach its full potential in

gaming.

Player Involvement

Beyond game scores, RL agents can be evaluated

based on how engaging they make the game for

human players, particularly in co-op or team-

based settings. For instance, in Quake III Arena,

DeepMind’s RL agents learned to collaborate with

human teammates, making strategic decisions

that enhanced player engagement, such as

defending teammates or coordinating attacks.

Player involvement is usually measured through

feedback, time spent in the game, or the level of

collaboration between the RL agent and human

players.

Computational Complexity

RL algorithms tend to be computationally

expensive, and this is highly exacerbated in

complex games with massive numbers of states

and actions. The more subtle an environment is in

a video game, the greater it becomes to handle

computationally. For instance, in games like

StarCraft II, an agent must deal with multiple

resources, multiple units, and strategy framing

against opponents in real-time (9). Thus, the

number of states explodes exponentially as the

number of elements, and it is impossible to

evaluate all cases in detail. Likewise, in games

with large action spaces, such as Dota 2, the agent

has to choose the best equipment, skills, and

Ashish and Jasleen, Vol 5 ǀ Issue 4

743

strategies, making it even tougher for RL agents to

learn efficient policies. Thus, RL algorithms must

be computationally efficient to process these

extensive arrays of states and actions in real-time

settings. Example: In Alpha Go, RL algorithms

required tremendous computational

infrastructure, consuming as many as 1,920 CPUs

and 280 GPUs for training. Even though

improvements like PPO have reduced the

overhead, the resource burden is still heavy,

especially in RTS games. What actually measures

efficiency would be train time, resource usage-e.g.,

GPU/CPU-and whether or not the algorithm can

scale to larger environments.

Generalization across Game Contexts

One key limitation of RL agents is over fitting,

where an agent trained in specific scenarios

performs well in those conditions but struggles

when faced with unfamiliar situations (33). This

highlights the difficulty of generalization in games

with diverse content. For example, an RL agent

trained on a specific map in Fortnite may fail to

adapt to a new map with different terrain and

environmental conditions. Transfer learning

techniques are also being explored to improve the

generalization, which enables the RL agents to

apply learned knowledge from one game or

environment with minimal retraining to another.

For example, an RL agent mastered in navigation

of levels in Super Mario Bros. can transfer its

knowledge to other plat formers such as Celeste,

despite the differences in game mechanics.

Generalisation is probed by testing the

performance of an agent in an unseen, entirely

new environment. Dropped performance reveals

limitations in adaptability in the agent.

Real-Time Constraints

Latency and response time are key aspects of

video games that require real-time decision-

making, and delays can have a substantial impact

on performance. To compete with human players,

RL agents must make quick judgments,

necessitating algorithms that operate on a tight

time schedule (38). For instance, in fast-paced

games such as "Over watch," split-second

decisions are very important. An RL agent would

need to react practically immediately to the

actions of the opponents in order to be effective,

meaning that algorithms need to be highly fine-

tuned. Besides, in real-time strategy games,

agents must strike a balance between long-term

planning and instant action in managing

resources, creating plans, and responding to

opponents in real time. For instance, in "Age of

Empires," an agent would have to collect

resources, create structures, train soldiers, and

generate a strategy against other players. This

does require sophisticated planning and swift

decision-making, posing serious obstacles to RL

algorithms.

Conclusion
The relationship between video games and RL is

complementary and keeps redefining possibilities

in the gaming industry. Through this review

paper, we have examined the fundamental ideas

of RL and its use in a variety of gaming contexts—

from vintage arcade games to contemporary

multiplayer experiences. Several RL algorithms

have been analyzed in order to shed light on their

advantages and disadvantages when it comes to

solving challenging gameplay tasks, such as

mastering subtle control tasks in immersive

virtual environments or learning optimal

strategies in strategic simulations (39). It seems

certain that the incorporation of AI-driven agents

into video games will go further in the future,

providing players with previously unheard-of

degrees of immersion, difficulty, and engagement.

However, incorporating RL into video games

involves a number of serious challenges that must

be overcome in order to fully realize its potential.

The key hurdles for RL in video games include

computational complexity, environment design,

generalization, and real-time limitations. These

difficulties stem from the complex nature of video

game settings, the variety of player interactions,

and the requirement for agents to make quick,

strategic judgments in real-time. Despite these

obstacles, tremendous progress has been made in

developing RL techniques and methodologies.

Researchers have created novel algorithms,

frameworks, and platforms for training RL agents

in various gaming scenarios, paving the way for

more intelligent and engaging gaming

experiences.

Future of RL in Video Games

The future of RL in video games holds vast

potential for ongoing research and innovation.

Advances in algorithmic techniques, such as deep

reinforcement learning, multi-agent systems, and

hierarchical reinforcement learning, are poised to

improve AI agents' capabilities in gaming

Ashish and Jasleen, Vol 5 ǀ Issue 4

744

contexts. Furthermore, creating complex settings

that effectively imitate real-world dynamics, such

as dynamic weather patterns, complex physics

interactions, and evolving player strategies, will

require RL agents to adapt and learn robust

methods. As researchers investigate new

approaches to reward engineering, generalization,

and transfer learning, RL agents are projected to

become more versatile and adaptable across a

variety of games, scenarios, and settings.

Abbreviations
AI: Artificial Intelligence, A3C: Asynchronous

Advantage Actor-Critic, CNN: Convolutional

Neural Network, DQN: Deep Q Network, FPS: First

Person Shooter, MDP: Markov Decision Process,

ML: Machine learning, NEAT: Neuro Evolution of

Augmenting Topologies, NPCs: Non-Player

Characters, PPO: Proximal Policy optimization,

RL: Reinforcement Learning, RTS: Real-Time

Strategy, SAC: Soft Actor Critic, SARSA: State

Action Reward State Action, TD: Temporal

Difference.

Acknowledgement
The authors want to acknowledge the enabling

research environment provided by the

Department of Computer Science and

Applications, Panjab University, Chandigarh.

Author Contributions
Ashish Kumar conducted the literature review,

synthesized the findings, and drafted the

manuscript. Jasleen Kaur Bains guided the

research process, conceptualized the study, and

revised the manuscript. Both authors read and

approved the final manuscript.

Conflict of Interest
The authors declare that there are no conflicts of

interest regarding the publication of this paper.

Ethics Approval
This study did not involve any human or animal

subjects, and therefore did not require ethics

approval.

Funding
No funding was received.

References
1. Hodges A. Alan Turing and the Turing test. Springer.

2009.
2. Arulkumaran K, Deisenroth MP, Brundage M,

Bharath AA. Deep reinforcement learning: A brief
survey. IEEE Signal Process Mag. 2017;34(6):26–38.

3. Togelius J. Playing smart: On games, intelligence,
and artificial intelligence. MIT Press; 2019.

4. Wang FY, Zhang JJ, Zheng X, Wang X, Yuan Y, Dai X,
et al. Where does AlphaGo go: From church-turing
thesis to AlphaGo thesis and beyond. IEEE/CAA
Journal of Automatica Sinica. 2016;3(2):113–20.

5. Ramlan AA Bin, Ali AM, Hamid NHA, Osman R. The
implementation of reinforcement learning
algorithm for ai bot in fighting video game. In: 2021
4th International Symposium on Agents, Multi-
Agent Systems and Robotics (ISAMSR). IEEE.
2021:96–100.

6. Sutton RS. Reinforcement learning: An introduction.
A Bradford Book. 2018.

7. Watkins C, Dayan P. Q-learning. mach. learn. In
Learn. 1992.

8. Mnih V. Playing atari with deep reinforcement
learning. arXiv preprint arXiv:13125602. 2013.

9. Silver D, Hubert T, Schrittwieser J, Antonoglou I, Lai
M, Guez A, et al. A general reinforcement learning
algorithm that masters chess, shogi, and Go through
self-play. Science. 2018;362(6419):1140–4.

10. Vinyals O, Babuschkin I, Czarnecki WM, Mathieu M,
Dudzik A, Chung J, et al. Grandmaster level in
StarCraft II using multi-agent reinforcement
learning. Nature. 2019;575(7782):350–4.

11. Berner C, Brockman G, Chan B, Cheung V, Dębiak P,
Dennison C, et al. Dota 2 with large scale deep
reinforcement learning. arXiv preprint
arXiv:191206680. 2019.

12. Schulman J, Wolski F, Dhariwal P, Radford A, Klimov
O. Proximal policy optimization algorithms. arXiv
preprint arXiv:170706347. 2017.

13. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van
Den Driessche G, et al. Mastering the game of Go
with deep neural networks and tree search. Nature.
2016;529(7587):484–9.

14. Kumar S, Punitha S, Perakam G, Palukuru VP,
Raghavaraju JV, Praveena R. Artificial Intelligence
(AI) Prediction of Atari Game Strategy by using
Reinforcement Learning Algorithms. In: 2021
International Conference on Computational
Performance Evaluation (ComPE). IEEE. 2021:536–
9.

15. Shaker N, Togelius J, Nelson MJ. Procedural content
generation in games. 2016.

16. Naeem M, Rizvi STH, Coronato A. A gentle
introduction to reinforcement learning and its
application in different fields. IEEE access.
2020;8:209320–44.

17. Kavukcuoglu K. Asynchronous methods for deep
reinforcement learning. In: Int Conf Mach
Learn(ICML). 2016:2850–69.

18. Hammoudeh A. A concise introduction to
reinforcement learning. Princess Suamaya
University for Technology: Amman, Jordan. 2018.

19. Sigaud O, Buffet O. Markov decision processes in
artificial intelligence. John Wiley & Sons; 2013.

20. Jia J, Wang W. Review of reinforcement learning
research. In: 2020 35th Youth Academic Annual
Conference of Chinese Association of Automation
(YAC). IEEE. 2020:186–91.

21. O’Donoghue B, Osband I, Munos R, Mnih V. The
uncertainty bellman equation and exploration. In:
International conference on machine learning.
2018:3836–45.

Ashish and Jasleen, Vol 5 ǀ Issue 4

745

22. Sebastianelli A, Tipaldi M, Ullo SL, Glielmo L. A Deep
Q-Learning based approach applied to the Snake
game. In: 2021 29th Mediterranean Conference on
Control and Automation (MED). IEEE. 2021:348–53.

23. Jang B, Kim M, Harerimana G, Kim JW. Q-learning
algorithms: A comprehensive classification and
applications. IEEE access. 2019;7:133653–67.

24. Almalki AJ, Wocjan P. Exploration of reinforcement
learning to play snake game. In: 2019 International
Conference on Computational Science and
Computational Intelligence (CSCI). IEEE. 2019:377–
81.

25. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J,
Bellemare MG, et al. Human-level control through
deep reinforcement learning. Nature.
2015;518(7540):529–33.

26. Kumar S. Balancing a CartPole System with
Reinforcement Learning--A Tutorial. arXiv preprint
arXiv:200604938. 2020.

27. Fu MC. A tutorial introduction to Monte Carlo tree
search. In: 2020 Winter Simulation Conference
(WSC). IEEE. 2020:1178–93.

28. Farag W. Multi-agent reinforcement learning using
the deep distributed distributional deterministic
policy gradients algorithm. In: 2020 International
Conference on Innovation and Intelligence for
Informatics, Computing and Technologies (3ICT).
IEEE. 2020:1–6.

29. Phon-Amnuaisuk S. Learning to Play Pong using
Policy Gradient Learning. arXiv preprint
arXiv:180708452. 2018.

30. Pepels T, Winands MHM, Lanctot M. Real-time
monte carlo tree search in ms pac-man. IEEE Trans
Comput Intell AI Games. 2014;6(3):245–57.

31. Stadie BC, Abbeel P, Sutskever I. Third-person
imitation learning. arXiv preprint arXiv:170301703.
2017.

32. Haarnoja T, Zhou A, Abbeel P, Levine S. Soft actor-
critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. In:
International conference on machine learning.
PMLR. 2018:1861–70.

33. Cobbe K, Klimov O, Hesse C, Kim T, Schulman J.
Quantifying generalization in reinforcement
learning. In: International conference on machine
learning. PMLR. 2019:1282–9.

34. Lohokare A, Shah A, Zyda M. Deep learning bot for
league of legends. In: Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive
Digital Entertainment. 2020:322–4.

35. Angulo E, Lahuerta X, Roca O. Reinforcement
Learning in Minecraft. 2020.
https://scholar.google.com/scholar?hl=en&as_sdt=
0%2C5&q=%5D+Reinforcement+Learning+in+Min
ecraft+by+E+Angulo&btnG=

36. Fuchs F, Song Y, Kaufmann E, Scaramuzza D, Dürr P.
Super-human performance in gran turismo sport
using deep reinforcement learning. IEEE Robot
Autom Lett. 2021;6(3):4257–64.

37. Jaderberg M, Czarnecki WM, Dunning I, Marris L,
Lever G, Castaneda AG, et al. Human-level
performance in 3D multiplayer games with
population-based reinforcement learning. Science
(1979). 2019;364(6443):859–65.

38. Bard N, Foerster JN, Chandar S, Burch N, Lanctot M,
Song HF, et al. The hanabi challenge: A new frontier
for ai research. Artif Intell. 2020;280:103216.

39. Setiaji B, Pujastuti E, Filza MF, Masruro A, Pradana
YA. Implementation of reinforcement learning in 2d
based games using open AI gym. In: 2022
International Conference on Informatics,
Multimedia, Cyber and Information System
(ICIMCIS). IEEE. 2022:293–7.

