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Abstract 
Reinforcement learning is one of the most popular models for building agents that deal with the real world but are 
not distinctly told which actions to perform. In the context of gaming, the application of reinforcement learning thus 
spans many different categories, from classic arcade games to modern simulations. The aim of this review paper is to 
present a comprehensive review of reinforcement learning in gaming, its core methods or algorithms, and the results 
obtained. This paper first lays the groundwork by discussing the basics of reinforcement learning, among which are 
agents, environments, rewards, and policies. Then we discussed the mathematical framework of reinforcement 
learning, the Markov decision process, and the Bellman equation. Thereafter, it discusses specific reinforcement 
learning algorithms that have been successfully implemented in video games. A variety of algorithms has been 
adapted from the field of reinforcement learning and has shown huge success, like Q-learning, deep Q-networks, and 
policy gradients. Then we compare the different games and algorithms associated with them and their outcomes. 
There are also some major challenges with RL in video games, such as computational complexity, environment design, 
and many more. Finally, the conclusion and future aspects of applications of reinforcement learning in video games 
are discussed. 
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Introduction 
Artificial intelligence (AI) is a technology enabling 

computers and machines to mimic human 

intelligence and problem-solving skills. John 

McCarthy coined the term ‘Artificial Intelligence’ 

in 1956, but the foundational principles were 

initially developed in 1950 by Alan Turing (1). AI 

finds numerous applications, with video games 

being a prominent domain. It is very common for 

video games to have intelligent agents, which 

makes them more entertaining and challenging 

for their players. The early Atari games, such as 

Pong and Space Invaders, were among the first to 

feature AI. Video games provide a safe and cost-

effective environment for AI research due to their 

controllable virtual settings (2). Reinforcement 

learning (RL) is one of the best ways to implement 

AI in video games. Arthur Samuel is the first 

person to use RL to develop a program to play 

checkers that learns from its experience (3). In 

recent years, RL has been applied to Google Deep 

Mind’s Alpha Go and Open AI Five. Alpha Go 

achieved a historic victory against the world 

champion Go player, Lee Sedol (4), while Open AI 

Five secured consecutive wins against Dota 2 

World Champions in 2019 (5). The objective of 

this study is to provide an overview of the 

application of RL techniques within the context of 

video games and to identify the significant 

challenges associated with their integration. This 

study aims to lay the groundwork for future 

research by offering a fundamental understanding 

of RL principles and their applications in gaming. 

The paper offers an in-depth examination of 

various RL techniques, including Q-learning, deep 

Q-networks, and policy gradients, and their 

implementation in video games. Understanding 

these techniques will reveal how RL algorithms 

are designed to address complex problems in 

dynamic and interactive environments. This 

paper has discussed several RL techniques, 

including Q-learning, deep Q-networks, policy 

gradients, and applications to video games. If 

understood, these techniques give the reader 

insight into the design of RL algorithms to solve 

complicated issues in dynamic and interactive 

environments. This paper discusses the 
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fundamentals of RL and popular algorithms 

applied in video games. It examines several games 

in which popular RL techniques were used, 

providing examples of their outcomes. Further it 

addresses the challenges faced by RL techniques. 

Finally, the paper concludes with a discussion of 

future research directions and potential 

developments. Over the past few decades, RL has 

advanced significantly, particularly in its 

application to video games. A pivotal work in this 

field was Sutton and Barto's 1998 publication, 

Reinforcement Learning: An Introduction (6), 

which introduced the temporal difference (TD) 

learning method. The TD approach integrated 

ideas from supervised learning and dynamic 

programming. It allowed an agent to learn 

predictions of future rewards without requiring a 

model of the environment. TD learning's success 

paved the way for further breakthroughs in RL; it 

promised great potential in both theoretical and 

practical domains, including gaming. Building 

upon this foundation, one of the most used model-

free RL algorithms introduced was Q-learning by 

Watkins and Dayan in 1992 (7), The off-policy 

nature of Q-learning provides the ability to update 

policies relative to the optimal actions instead of 

the ones that have been taken by the agent, 

making Q-learning very appropriate for complex 

gaming environments. The versatility of Q-

learning was later demonstrated in its application 

to classic arcade games such as Snake and Pong, 

where agents learned the optimal action in a trial-

and-error process. 2013 saw the development of 

Deep Q-Networks (DQN) by Mnih et al. (8), where 

DQN represented a gigantic step forward in 

bringing together Q-learning and deep neural 

networks. Thereby, RL algorithms were given the 

capacity to deal with high-dimensional state 

spaces that usually appear in Atari games. DQN 

agents demonstrated superhuman performance in 

several games; the shift marked the importance of 

dominance in AI-based game strategies by RL. 

Notably, DQN addressed the stability issues faced 

by traditional Q-learning through techniques like 

experience replay and target networks, 

significantly enhancing the training efficiency. 

Another turning point for RL in gaming 

application was reached in 2016 by Alpha Go (9), 

developed by Google's Deep Mind. Alpha Go 

conquered human Go professionals by using 

Monte Carlo tree search paired with deep RL 

techniques, demonstrating that RL can be 

powerful enough to solve highly strategic and 

complex tasks in real-time, multiplayer 

environments. This achievement became the 

milestone for future breakthroughs in other 

games, such as Dota 2 and StarCraft II, where RL 

agents like OpenAI Five and AlphaStar, beat 

human champions (10, 11). These developments 

highlight RL’s evolution from early theoretical 

frameworks to practical, high-impact applications 

in gaming. Since policy gradient methods and 

Proximal Policy Optimization (PPO, 12), have 

been proposed, RL has found its application in the 

most sophisticated strategies involving real-time 

strategy games, offering a flexible and scalable 

manner of handling dynamic multi-agent 

environments. Sutton and Barto (6), in their 

foundational work in 1998, Watkins and Dayan in 

1992 (7), Mnih et al., in 2013 (8), as well as Silver 

et al. in 2016 (13), introduced core algorithms 

currently inherent to RL and proved the former's 

applicability to playing games. Each successive 

development has made RL capable of dealing with 

more sophisticated game environments-from the 

simple, dumb arcade games early on to the rather 

sophisticated real-time strategy games that 

demand a high sense of decision-making ability 

and flexibility. These works are the backbone of 

success in RL gaming, and their on-going influence 

continues to mold the application of RL in modern 

video game AI. 

Comparison of RL with other 

Approaches to AI in Gaming 
As artificial intelligence keeps developing and 

getting better for games, many approaches must 

be used, including supervised learning, 

unsupervised learning, and reinforcement 

learning, each with different advantages and 

disadvantages. Supervised and unsupervised 

learning are based on predefined data, but RL 

stands out because it learns by continuous trial 

and error. This section addresses how RL 

compares to these AI approaches, showing how 

interaction-based learning particularly suits the 

complexity of game environments and their many 

dynamic changes (Figure 1). 
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Figure 1: Brief History of Reinforcement Learning 

Supervised Learning 
Supervised learning builds models on labelled 

data. In this, the output to be obtained given an 

input is known in advance (14). Error is 

minimized, and that's how it learns. This really 

proves to be efficient with tasks such as 

classification, object detection, and pattern 

recognition -that is frequently used in the game to 

recognize avatars of the player or NPCs. For 

example, such facial recognition in games can rely 

on supervised learning in order to determine the 

difference between the player and the NPC 

(Figure 2). However, supervised learning is not 

sufficient in changing game environments that 

demand real-time decisions as it cannot adapt 

without retraining to new cases or situations. In 

games like StarCraft II (10), where strategies 

evolve dynamically, supervised learning becomes 

impractical because it depends on fixed datasets. 

If the game's strategy changes, the model must be 

retrained, making supervised learning less 

adaptable compared to RL, which continuously 

updates its strategy through interaction with the 

game environment. 
 

 
Figure 2: Supervised Learning 

 
Figure 3: Unsupervised Learning 
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Unsupervised Learning 
Unsupervised learning deals with unlabelled data, 

clustering similar data points to discover hidden 

patterns or structures (14). It is very handy for 

tasks like procedural content generation, in which 

game levels or worlds are created without any 

human intervention being as direct as possible, so 

that there is variability and uniqueness in 

gameplay. For example, the procedurally 

generated worlds in No Man's Sky (15) are 

produced through techniques of unsupervised 

learning. The algorithm can generate infinite 

worlds based on the patterns in the underlying 

data, giving a broad and varied player experience. 

But, in real-time, interactive games that entail 

decision-making, unsupervised learning is limited 

because it does not contain a reward-based 

feedback loop. In contrast, RL continuously 

increases the performance of the agents as it 

learns from rewards and penalties. In scenarios 

involving gameplay where the environmental and 

strategic conditions change, this makes it 

relatively more potent (Figure 3). 

Reinforcement Learning  
Reinforcement learning differs fundamentally 

from other AI approaches in that agents can learn, 

interacting with their environment to adapt their 

strategies over time (16). All agents receive 

rewards or penalties depending on actions taken, 

which helps agents update their strategies to 

maximize cumulative rewards. Because of this 

property, reinforcement learning is suited to 

complex, dynamic environments where real-time 

adaptations are necessary. For example, AlphaGo 

(13) was an RL agent that learned to play Go 

within millions of simulations and kept improving 

through trial and error. Furthermore, since 

supervised learning depends on labelled data, an 

RL-trained agent such as AlphaGo managed to 

come up with innovative strategies not explicitly 

programmed or trained against particular data. 

This learning process through trials and errors 

together with the real-time environment in RL 

provides the latter a competitive advantage in AI 

methods used for gaming applications (Figure 4).  

 

 
Figure 4: Reinforcement Learning 

Reinforcement learning thus has the power to 

adapt to changing environments, making it very 

effective in games nowadays. Supervised and 

unsupervised learning play their roles especially 

in classification and content generation, but it 

lacks real-time adaptability in complex games. 

The dynamic process of RL, based on rewards and 

penalties, makes it efficient in complex interactive 

games where strategy evolves continuously. 

Fundamentals of RL 
Reinforcement Learning is an ML technique that 

allows an agent to learn in an uncharted 

environment through trial and error, using 

feedback from its actions. The main components 

of an RL system are the agent and the 

environment, the state, the action, the policy, a 

reward signal, the value function and the model 

(6, 17). Figure 5 shows the working of RL. Agent: 

The person being trained. In GTA, the agent would 

be either a player or an AI-controlled character. 

Environment: this refers to the surroundings 

where the agent is located. It is the area in which 

the agent performs some actions and gets 

rewards or punishment as feedback for positive 

and negative behaviour. In GTA, the environment 

is the virtual city and its inhabitants. The state 

represents the current situation in the 

environment. In GTA, it could be the agent’s 

position, nearby cars, available missions and the 

current wanted level. Action refers to the decision 

or move that the agent can make. In GTA, actions 

could include walking, running, driving, shooting, 

or starting a mission. The policy is the way an 

agent acts within the environment and learns to 

behave in the environment under given 

circumstances. In simple words, the policy maps 

the states of action. The policy can be a function 
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or even some lookup table. The policy is 

considered as a core of RL agents because it alone 

is enough to determine agents’ behaviour (6, 17, 

18). In GTA, if the agent's state indicates that a 

mission is nearby, then the policy might prioritize 

moving towards the mission starting point. A 

reward signal indicates how favourable or 

unfavourable an event is. It defines the goal of a 

RL problem. At every event, the environment 

sends a signal to the agent based on the actions 

performed in that particular event. That signal is 

known as a reward signal. The agent’s only 

objective is to maximize the total reward in the 

long run. In a biological system, the reward signal 

is similar to the experience of pleasure or pain. If 

some action generates low or negative reward 

then the policy will shift to some other action 

which will generate positive or non-negative 

reward. In GTA, rewards can be money earned 

from missions, reputation points, or even 

penalties like a wanted level for breaking the law. 

The value function is the future reward that an 

agent would be able to get by executing any 

particular action in a certain state. Thus, it tells 

the evaluation of the states and, according to this 

evaluation, the optimal action. In simple terms, 

the value function estimates in what state the 

agent will be given and how good a certain state is 

in terms of future rewards. In GTA, for example, 

proximity to a mission start would be of high 

value due to the possible reward from the 

successful mission completion. In everyday terms, 

rewards are like pleasure and pain, while value 

corresponds to how pleased or dissatisfied you 

are in some particular state. 

  

Figure 5: Working of RL 
 

The final component of RL systems is a model of 

the environment. This model allows us to mimic 

the behaviour of the environment or predict how 

the environment will respond to certain actions. 

However, the model is an optional component of 

the RL system. In GTA, a model could simulate a 

driving scenario to predict the outcome of actions 

such as turning at an intersection or braking, 

which might help the agent evade the police or 

complete a mission quickly. In RL, an agent needs 

to learn to take appropriate actions in unknown 

environments in order to maximize the overall 

return. For this, a highly formal mathematical 

framework is needed to model the interaction 

between the agent and the environment. In doing 

so, an appropriate formulation and solution of RL 

problems can be realized in the context of a 

Markov Decision Process. 

Markov Decision Process 
Markov decision Process (MDP) is a mathematical 

framework that is used to study decision-making 

processes between an agent and its environment, 

where outcomes depend on the actions taken and  

some element of randomness. MDP aims at 

providing the mapping of best actions for each 

condition of an environment. MDP is based on 

Markovian property, which only takes into 

account the present state and ignores information 

from the past state. Future state prediction is 

entirely unaffected by the prior state. The physical 

objects in the surroundings remain unchanged, 

and the laws of physics remain constant (19). 

Chess is one of the games where the rules don't 

change and you don't have to recall your previous 

moves to play the next one. The five-tuple (S, A, P, 

R, ϒ) can be used to characterize the Markov 

decision process (20). 

States(S) 

The S represents all possible states of the system. 

A state is a detailed description of the 

environment at a given time. In GTA, a state can 

be described by the current location of the player, 

their health level, the current amount of money 

they have, and the presence of non-player 

characters (NPCs) around them. 
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Actions 

The set A represents all the possible actions that 

the decision-maker or agent can take. An action 

influences the transition from one state to 

another. In GTA, actions could be driving to a new 

location, engaging in combat, interacting with 

NPCs, and performing missions. 

Transition Probability (P) 

This function describes the probability of 

transitioning from one state to another based on 

the action performed by the agent. It is denoted as 

P (s, a, s’), where s is the current state, a is the 

action performed, and s’ is the next state. In GTA, 

if the player chooses to drive from point A to point 

B, then the transition function represents the 

probability of arriving at point B without dying or 

encountering police. Figure 6 depicts the state 

transition diagram. 

Reward Function (R) 

This specifies the reward received by the agent 

after transitioning from the state (s) to (s’) due to 

action a. In GTA, this reward could be money 

earned from a mission, losing health or earning a 

bad reputation for not completing objectives. 

Discount factor (ϒ)  

The discount factor signifies the difference 

between the present and future returns, implying 

that the present reward holds greater significance 

than the future reward. In GTA, the discount 

factor might prioritize immediate rewards such as 

quickly gaining money and health over long-term 

incentives. 
 

 

 
Figure 6: State Transition Diagram 

       

Bellman Equation 
When it comes to solving MDP and RL problems, 

Richard Bellman's renowned Bellman equation, 

which he created in 1953, is of utmost 

significance. The value function can be computed 

using the Bellman equation. In RL, the Bellman 

equation connects the value of a state to the 

expected value of future states (21). It 

decomposes the value of a state into immediate 

rewards and the discounted value of successor 

states under a certain policy. The Bellman 

equations involve two types of value functions: 

State Value Function (Vπ (s)): This represents 

the expected return (total discounted rewards) 

starting from the state (s) and following a 

particular policy (π). 

Action Value Function (Qπ (s, a)): This 

represents the expected return starting from state 

(s), taking action (a), and thereafter following a 

policy (π). 

Bellman equation for State Value function (7): 

𝑉𝜋(𝑠) =  ∑   
𝑎 𝜋(𝑠|𝑎) ∑   

𝑠′ 𝑃𝑠𝑠′
𝑎  [𝑟(𝑠, 𝑎) + 𝛾𝑉𝜋(𝑠′)]  [1] 

Vπ(s) in equation 1 represents the State value 

function, where (s) is the state and the policy (π). 

π (s|a) is the probability of taking action (a) in the 

state (s) under policy (π). Pass’ is the probability of 

transitioning from state (s) to state (s’) after 

taking action (a). r (s,a) is the immediate reward. 

ϒ is the discount factor which balances the 

importance of immediate and future rewards. 

Bellman equation for Action Value function (19): 

𝑄𝜋(𝑠, 𝑎) = ∑   
𝑠′ 𝑃𝑠𝑠′

𝑎 [𝑟(𝑠, 𝑎) + 𝛾 ∑   
𝑎′ 𝜋(𝑠′) 𝑄𝜋(𝑠′, 𝑎′)] [2] 

Qπ(s,a) in equation 2 represents the action value 

function, where (s) is state and  (a). Qπ(s’,a’) 

represents the action value function, where (s’) is 

state and  (a’). π (s’|a’) is the probability of taking 

action (a’) in state (s’) under policy (π). Pass’ is the 

probability of transitioning to state (s’) from state 

(s) after taking action (a). r (s,a) is the immediate 

reward. ϒ is the discount factor which balances 

the importance of immediate and future rewards. 

RL Algorithms Used in Video Games 

RL algorithms have recently opened up a new era 

of artificial intelligence in video games. While 

current approaches to classical AI in games 

involve the creation of predefined behaviors and 

rules, reinforcement learning allows game 

characters and agents to learn and adapt by 

interacting with their surroundings. This dynamic 

technique ensures not only realism but also 

unpredictability among non-player characters 

(NPCs), leading to even more complex and 

demanding game aspects. This section looks at the 

use of RL algorithms in video games. But before 

that, let us understand some key terms: 
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• Model-Free RL 

Model-Free RL algorithm relies not on a model 

of the environment; instead, it learns a policy 

or value function directly from interactions 

with the environment. Two well-known kinds 

of model-free algorithms are Q-learning and 

policy gradient methods. 

• Model-Based RL 

Model-based RL algorithms, on the other hand, 

typically obtain the dynamics. They require 

learning a model of the dynamic environment, 

predicting the next state and the reward given 

the present state and action. The agent uses 

this model to plan its actions, which are the 

predictions of future states, and selects 

behaviours in order to maximize expected 

rewards. One example is Dyna-Q, a class of 

algorithms that combines direct learning with 

model-based planning. 

• On-policy 

Algorithms evaluate an existing policy through 

and through. They demand that the policy 

needs to be updated according to the actions 

that have been taken by the agent. For 

example, the SARSA algorithm updates the 

action-value function according to the actions 

of the current policy, thus making sure 

learning is on par with the experience of the 

agent. 

• Off-policy 

Algorithms involve analysing or improving 

policies other than those used to generate 

data. This allows higher flexibility: they can 

even learn from activities falling outside the 

present policy. A classic example of an off-

policy strategy is Q-learning, where the agent 

learns about the optimal policy even while 

pursuing a different policy for exploration. 

Q-learning 
Q-learning is a model-free, off-policy approach for 

learning long-term optimal behaviour (7). It 

focuses on developing a policy that maximizes 

long-term benefits by learning to react optimally 

in an environment. Despite its simplicity, Q-

learning is effective in complicated environments 

with discrete state and action spaces, making it 

useful in a variety of disciplines, including gaming, 

robotics, and finance (22). This algorithm learns 

the action value function rather than the state 

value function (23), which is defined as 

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡+1 + 𝛾  𝑎′∈𝐴𝑄(𝑠𝑡+1, 𝑎′) −  𝑄(𝑠𝑡, 𝑎𝑡)]    

                                                           [3] 

In equation 3, the learned action-value function Q 

is directly approximated to the optimal action-

value function, regardless of the policy used (23). 

Q-learning, a reinforcement learning algorithm 

has been used in several video games. One 

noteworthy example is the classic game Snake. 

In the Snake game, the player controls a snake 

that moves around the screen to eat food 

(represented by dots, 24). The snake's length 

increases as it consumes food. The snake's goal is 

to avoid hitting the walls or its own tail. Q-

learning teaches the snake agent how to play the 

game by rewarding good behaviour and 

penalizing bad behaviour. The agent discovers 

which activities, like approaching food, result in 

favourable rewards and which actions, such as 

leaving the screen, result in undesirable 

outcomes. At each step of the game, the agent 

chooses the action with the highest expected 

reward based on its current state. 

State-Action-Reward-State-Action 
The goal of the state-action-reward-state-action 

(SARSA) on-policy method is to tackle RL 

problems by teaching a machine learning model a 

new Markov decision process policy (25). 

According to the algorithm, the agent takes an 

action (A) in the current state (S), receives a 

reward (R), moves on to the next state (S1), and 

then takes another action (A1) in S1. 

Consequently, the abbreviation SARSA is 

represented by the tuple (S, A, R, S1, A1). The 

algorithm is known as an "on-policy" algorithm 

since it modifies the policy in response to 

activities (6). In comparison to Q-learning, the 

SARSA algorithm is a model-free algorithm, and in 

on-policy learning, it evaluates and follows a 

single policy. SARSA may converge slower than Q-

learning since it updates based on policy actions 

rather than optimal actions. SARSA is an on-policy 

reinforcement learning algorithm that balances 

exploration and exploitation. One of the best 

games where SARSA is applied is the Cartpole 

Game (26). In the Cartpole game from OpenAI 

Gym, the goal is to balance a pole on a moving 

cart. The agent must learn to control the cart’s 

movements to prevent the pole from falling. Using 

Deep SARSA (a variant of SARSA with deep neural 

networks), the agent learns an effective policy for 

balancing the pole. The trained agent becomes 
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proficient at maintaining balance and preventing 

the pole from falling off. This demonstrates how 

SARSA can be used to optimize decision-making in 

a simple game like Cartpole. 

Monte Carlo Method 
Monte Carlo methods in RL do not assume 

complete knowledge of the model or the 

environment. Rather, it learns from its own 

experiences as it interacts with the environment 

either real or simulated. With the simulation of an 

environment, some model information is needed 

but quite less detailed than in methods like 

dynamic programming because, under dynamic 

programming, one needs the probabilities of 

every transition. Monte Carlo methods depend on 

averaging complete returns and are usually 

employed in episodic tasks. This implies that the 

value of a state is estimated, and the policy is 

updated only after an episode is completed. Just 

like all the other RL methods, we shall first look at 

the prediction problem for the Monte Carlo 

methods and then see how it can be used in 

solving the control problem. Prediction is nothing 

but estimating the values of states, which 

indicates how much useful it is for the agent to be 

in a particular state. The higher the value of a 

state, the better it is for the agent. And the control 

problem is that of finding the best policies. A 

specific Tic Tac Toe game instance is being played 

by an AI based on the Monte Carlo method (27), 

which is playing random variations of the game in 

the background. For each game outcome, the AI 

scores the outcome. Then, it picks the move that 

most influences the selection for achieving a win. 

In this way, the Monte Carlo method enables the 

AI to learn the most effective strategy without an 

exhaustive search. It is efficient and effective. 

Policy Gradient Algorithm 
It aims to search for the best policy that will 

maximize the expected return by directly 

modifying policies through policy iteration. Such 

algorithms are referred to as model-free because 

they do not assume prior knowledge about the 

model of the environment. In simpler terms, we 

do not know the environmental dynamics or the 

transition probabilities (28). This can be seen as 

the likelihood of moving to the next state (S') by 

performing an action from the current state (S). 

Transition probability and policy are sometimes 

mixed up. Distribution of actions provided to 

states is known as policy (π). Put simply, the 

policy determines how the agent acts, while the 

transition probability explains how the 

environment changes, which is often unknown in 

real-world scenarios. The Policy Gradient 

algorithm has been applied to different video 

games to improve decision-making by training the 

agents to learn optimal policies. Pong, of course, is 

a classic video game where the player controls a 

paddle in order to hit a ball back and forth. Policy 

Gradient was used in the Pong game optimization 

by researchers (29). The way the agent played 

Pong was learned from the agent, which was 

being controlled by the algorithm by modifying 

the movements of its paddle. This kind of research 

is also done by researchers in various other 

ATARI games, including Breakout, Pong, and 

Space Invaders. The trained agents have produced 

very good results and have outperformed human 

players in some games. For example, in Breakout, 

the agent learns how to break the bricks 

efficiently in order to maximize its score. The 

result underlines how powerful PG methods are 

to master complex video games. 

Deep Q-Network Algorithm 
The Deep Q-Network algorithm integrates 

training deep neural networks with RL. DQN 

operates directly on raw visual input, as seen in 

the Atari 2600 Games (8, 25). DQN, developed by 

DeepMind researchers, integrate deep neural 

networks with RL algorithms to provide a ground-

breaking answer to the complex challenges posed 

by high-dimensional state and action spaces. This 

invention has significantly advanced the 

profession by enabling efficient learning and 

decision-making under complex contexts (18). 

DQN overcomes the basic instability problem 

using two different practices, which include 

experience replay and target network. The 

fundamental idea used by DQN is to implement a 

deep neural network to take over the Q-function. 

The DQN algorithm implemented and optimized 

the action-value functions using a deep neural 

network-based approach. Below is an outline of 

the working procedure: 

Step 1: State Representation 

An input function that assigns a suitable 

numerical representation to the current state of 

the environment, either raw pixel values or 

previously pre-processed characteristics. The 

deep neural network should be of a particular 

design, most often a convolutional neural network 
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(CNN) that takes up the state of nature as input 

and outputs the action values for all possible 

actions that can be taken. This is termed the 

neural network architecture. 

Step 2: Experience Replay 

A replay memory buffer is a collection of the 

experiences of the agent, which consists of states, 

actions, rewards, and the next states from which 

the tuple is formed. 

Step 3: The Q-Learning Update 

Use small-sized mini-batches of experienced 

samples drawn from the replay memory buffer to 

update the weights of the neural network. A loss 

function for the Bellman equation between the 

goal and projected action values minimize the loss 

to achieve the update. 

Step 4: Exploration and Exploitation 

Actions to be taken either stochastically to 

explore the surroundings or greedily based on the 

current policy to achieve the balance between 

exploration and exploitation 

Step 5: Target Network 

Use an alternative target network of the same 

architecture for the design implemented to 

stabilize the learning. Update the target network 

periodically by replacing the weight of the main 

network with an equivalent copy of the weights. 

Now repeat all the steps: engage with the 

environment, collect data, update the network, 

and iteratively improve the policy until 

convergence. Researchers used DQN to play the 

classic arcade game, Pac-Man (18). The agent 

learned to negotiate the maze, evade ghosts, and 

gather pellets. After training, the DQN agent was 

able to reach human performance levels, thus 

proving that it indeed could learn the best policies 

for playing Pac-Man. It even devised gameplay 

strategies that topped human baselines. A number 

of other Atari 2600 games, from Space Invaders to 

Breakout, have also had DQN applied to them. 

RL in Video Games 
In game development, on the other hand, RL has 

been greatly hyped for its promising game AI 

revolution and potential betterment in the player 

experience. This paper discusses the core RL 

methods, focusing on their application to video 

games. A detailed overview of RL fundamentals, 

including agents, environments, policies, and 

rewards, is provided in the ‘Fundamentals of RL’ 

section. This section tabulates and compares 

these implementations in a selection of video 

games as shown in Table 1. 
 

Table 1: Shows an Overview of Selected Video Games, Their Associated RL Algorithms, and the Results 

from Running the RL Algorithms 

Category Game RL 

Algorithm 

Speed Accuracy Complexit

y 

Outcomes 

Strategy and Board 

Games 

 

AlphaG

o 

 (9, 13) 

MCTS with 

deep neural 

networks 

High 

computatio

nal cost, 

slow 

training 

Superhuma

n-level 

accuracy 

High; 

requires 

sophisticat

ed strategy 

and 

planning 

Defeated 

top human 

Go players, 

showcasing 

superior 

strategic 

thinking and 

learning 

from self-

play. 

 Chess 

(9) 

AlphaZero 

(Combines 

MCTS and 

Deep 

Learning) 

Moderate to 

high speed 

with self-

play 

Superhuma

n-level 

accuracy 

Moderate; 

strategic 

planning 

and 

foresight 

AlphaZero 

defeated top 

human and 

computer 

players, 

mastering 

the game 

through 

self-play. 
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Real-Time Strategy 

Games 

 

Dota 2 

(11) 

Proximal 

Policy 

Optimizatio

n (PPO) 

Moderate 

training 

speed 

High 

accuracy in 

real-time 

strategy 

Very high; 

multi-

agent 

coordinati

on 

OpenAI Five 

defeated 

professional 

human 

teams, 

demonstrati

ng advanced 

real-time 

strategy and 

coordinatio

n. 

StarCraf

t II (10) 

Deep Q-

Learning, 

Supervised 

Learning 

Slow 

training due 

to complex 

environmen

t 

High 

accuracy 

with 

strategic 

depth 

Very high; 

long-term 

planning 

required 

AlphaStar 

outperform

ed top 

human 

players, 

managing 

complex 

long-term 

strategies in 

a real-time 

setting. 

Classic Arcade Games 

 

Ms. Pac-

Man 

(30) 

Monte Carlo 

Tree Search 

(MCTS) 

Moderate 

speed due 

to tree 

search 

High 

accuracy 

in-game 

navigation 

Moderate; 

non-

determinis

tic 

elements 

Achieved 

high scores 

by 

effectively 

managing 

non-

deterministi

c elements. 

Atari 

Games 

(8, 14)  

Deep Q-

Network 

(DQN) 

Moderate 

training 

speed 

High 

accuracy 

across 

multiple 

games 

Moderate; 

varying 

game 

mechanics 

Achieved 

human-level 

performanc

e across 

various 

Atari games 

by learning 

game 

mechanics 

autonomous

ly. 

Platformer Games 

 

Super 

Mario 

Bros. 

(31) 

NEAT 

(Neuro 

Evolution of 

Augmenting 

Topologies) 

Slow due to 

the 

evolutionar

y process 

High 

accuracy in 

level 

completion 

High; 

requires 

evolving 

neural 

network 

topology 

Developed 

specialized 

models 

capable of 

autonomous

ly 

navigating 

complex 

game levels. 
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First-Person Shooter 

(FPS) Games 

 

Quake 

III 

Arena 

(Captur

e the 

Flag) 

(32) 

Deep Q-

Learning 

Moderate 

training 

speed 

High 

accuracy in 

multi-agent 

scenarios 

High; 3D 

environme

nt and 

team 

strategy 

Agents 

developed 

by 

DeepMind 

exhibited 

human-level 

performanc

e in team-

based first-

person 

shooter 

games. 

Multi-Agent and 

Cooperative/Competi

tive Games 

 

FIFA 

Soccer 

(33) 

Multi-Agent 

RL, 

Imitation 

Learning 

Moderate 

training 

speed 

High 

accuracy in 

teamwork 

and tactics 

High; 

team-

based 

tactics and 

strategies 

Agents 

developed 

by Google 

Research 

demonstrat

ed advanced 

playmaking 

abilities and 

teamwork. 

League 

of 

Legend

s (34) 

Hierarchical 

RL 

Slow due to 

multi-level 

decision-

making 

High 

potential 

accuracy in 

team 

strategies 

Very high; 

complex 

team 

strategies 

and roles 

Research in 

progress, 

with the 

potential to 

manage 

complex 

team 

strategies 

and role-

specific 

actions. 

Simulation and 

Robotics 

 

Minecra

ft (35) 

Asynchrono

us 

Advantage 

Actor-Critic 

(A3C) 

Moderate to 

high speed 

with parallel 

training 

High 

accuracy in 

task 

execution 

High; 

open-

ended 

environme

nt and 

tasks 

Trained 

agents to 

perform 

complex 

tasks and 

navigate 

open-ended 

environmen

ts. 

Gran 

Turism

o (36) 

Soft Actor-

Critic (SAC) 

Moderate to 

high-speed 

High 

accuracy in 

driving 

simulation 

High; 

continuous 

action 

spaces 

AI developed 

by Sony AI 

achieved 

expert-level 

performance 

in racing, 

handling 

complex car 

dynamics. 
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Figure 7: Accuracy and Complexity Levels of RL Algorithms in Various Games 

 

Figure 7 shows how different RL algorithms 

perform in terms of accuracy and complexity 

when used in a range of video games. The X-axis 

displays every game with its RL algorithm, with 

the Y-axis indicating the levels of accuracy and 

complexity. The accuracy of RL algorithms is 

shown by the blue bars, and their complexity 

levels are represented by the red bars. Games 

such as AlphaGo and Chess achieved accuracy at a 

superhuman level by utilizing reinforcement 

learning algorithms, which demand high levels of 

strategic planning and precision. In contrast, Ms. 

Pac-Man and Atari Games were successful due to 

their high precision despite being moderately 

complex, requiring navigation through 

predictable environments. In games such as Dota 

2 and StarCraft II, the level of complexity ranges 

from high to very high due to the importance of 

real-time strategy and coordination, yet the RL 

algorithms still achieved high accuracy despite 

the intricate gameplay. Super Mario Bros. and 

FIFA Soccer achieved high accuracy with 

moderate complexity, while Minecraft and Gran 

Turismo showed high accuracy with very high 

complexity because of their open-ended 

environments and continuous action spaces. This 

comparison aids in grasping how well RL 

algorithms perform in various gaming 

environments. 

Games Benefiting from Reinforcement 

Learning 
Considering the discussion made above on the key 

reinforcement learning algorithms applied in 

game playing, it is important to notice that 

different game types pose unique challenges and 

have had success differently with the application 

of RL. RL has been applied with great success 

across a wide spectrum of game genres going as 

far as turn-based strategy games requiring long-

term planning to real-time environments 

demanding fast responses to decisions. 

Categorizing these games according to the nature 

of their interaction with RL would thus let us 

better understand how reinforcement learning 

has revolutionized each genre and driven new 

developments in game AI. 

Strategy Games 

Turn-based strategy games, in particularly Chess 

and Go (9), rely greatly on experience learning 

since planning needs to be rather long-term. The 

RL techniques, applied here, strive greatly for 

optimal actions by analysing the great number of 

possible future scenarios. AlphaGo (4) of 

DeepMind used MCTS with the help of RL to beat 

human go champions. The algorithm continuously 

learnt the best strategy from millions of simulated 

games by using reward signals to learn the best 

moves. 



Ashish and Jasleen,                                                                                                                                        Vol 5 ǀ Issue 4 

 

742 
 

Real-Time Strategy Games 

Real-Time Strategy (RTS) games like StarCraft II 

and Dota 2 require agents to make real-time 

decisions involving resource management, multi-

agent coordination, and long-term strategies. 

Example: AlphaStar is an RL-based agent that was 

trained by Deep Q-Learning and policy gradients 

for superhuman performance in StarCraft II (10). 

Here, the agent will first learn from the human 

replays, then perfect its strategy through self-play. 

Open AI Five is another example where the RL 

agent defeated professional human players at 

real-time decision-making in the multi-player 

online game, Dota 2 (11). 

Arcade Games 

First experiments with RL algorithms were done 

on less complex games like Pong and Breakout. 

These games made good bench marks for early 

work in RL because their state spaces are small 

and the rewards are well defined. Example: DQN 

of Mnih et al. (8) achieved superhuman 

performance in Atari 2600 games, including Pong 

and Breakout, by learning to maximize rewards 

through trial and error, outperforming human 

players. 

First-Person Shooter (FPS) games 

The challenge, then, is much greater for RL agents 

with FPS games such as Quake III Arena because it 

involves the need for navigation through 3D 

environments, teamwork, and instantaneous 

actions (37). 

Example: In Quake III’s Capture the Flag mode, 

DeepMind trained RL agents to collaborate with 

teammates and defeat opponents in a multiplayer 

environment. This involved mastering strategies 

such as defence, offense, and resource 

management, all learned autonomously through 

reinforcement learning. Platformer Games Classic 

platformer examples, such as Super Mario Bros, 

require running through levels full of obstacles 

and enemies. RL agents optimized in such 

environments are trained to optimize movement 

and actions to complete levels efficiently. 

Example: The NEAT algorithm, Neuroevolutionary 

of Augmenting Topologies, evolved RL agents to 

play Super Mario Bros: it modified the neural 

network of the agent based on performance; thus, 

it learned policies on how it should be navigating 

through complex levels. 

 

Additional Metrics and Challenges in 

RL for Games 
Even though game scores and win rates have been 

fairly popular criteria to measure the 

performance of reinforcement learning agents, 

such metrics alone do not allow one to hold a 

comprehensive assessment of how an agent 

performs, especially in more intricate gaming 

environments. Other important aspects, including 

involvement by players, computational efficiency, 

and generalization across various game contexts, 

are critical determinants of overall effectiveness 

for RL algorithms in video games. These 

additional metrics offer deeper insights into how 

well RL agents perform beyond achieving high 

scores, focusing instead on their adaptability, 

efficiency, and interaction with human players. 

Furthermore, the challenges encountered by RL 

agents, such as computational complexity, 

environment design, generalization, and real-time 

constraints, demonstrate the obstacles that need 

to be overcome for RL to reach its full potential in 

gaming. 

Player Involvement 

Beyond game scores, RL agents can be evaluated 

based on how engaging they make the game for 

human players, particularly in co-op or team-

based settings. For instance, in Quake III Arena, 

DeepMind’s RL agents learned to collaborate with 

human teammates, making strategic decisions 

that enhanced player engagement, such as 

defending teammates or coordinating attacks. 

Player involvement is usually measured through 

feedback, time spent in the game, or the level of 

collaboration between the RL agent and human 

players. 

Computational Complexity 

RL algorithms tend to be computationally 

expensive, and this is highly exacerbated in 

complex games with massive numbers of states 

and actions. The more subtle an environment is in 

a video game, the greater it becomes to handle 

computationally. For instance, in games like 

StarCraft II, an agent must deal with multiple 

resources, multiple units, and strategy framing 

against opponents in real-time (9). Thus, the 

number of states explodes exponentially as the 

number of elements, and it is impossible to 

evaluate all cases in detail. Likewise, in games 

with large action spaces, such as Dota 2, the agent 

has to choose the best equipment, skills, and 
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strategies, making it even tougher for RL agents to 

learn efficient policies. Thus, RL algorithms must 

be computationally efficient to process these 

extensive arrays of states and actions in real-time 

settings. Example: In Alpha Go, RL algorithms 

required tremendous computational 

infrastructure, consuming as many as 1,920 CPUs 

and 280 GPUs for training. Even though 

improvements like PPO have reduced the 

overhead, the resource burden is still heavy, 

especially in RTS games. What actually measures 

efficiency would be train time, resource usage-e.g., 

GPU/CPU-and whether or not the algorithm can 

scale to larger environments. 

Generalization across Game Contexts 

One key limitation of RL agents is over fitting, 

where an agent trained in specific scenarios 

performs well in those conditions but struggles 

when faced with unfamiliar situations (33). This 

highlights the difficulty of generalization in games 

with diverse content. For example, an RL agent 

trained on a specific map in Fortnite may fail to 

adapt to a new map with different terrain and 

environmental conditions. Transfer learning 

techniques are also being explored to improve the 

generalization, which enables the RL agents to 

apply learned knowledge from one game or 

environment with minimal retraining to another. 

For example, an RL agent mastered in navigation 

of levels in Super Mario Bros. can transfer its 

knowledge to other plat formers such as Celeste, 

despite the differences in game mechanics. 

Generalisation is probed by testing the 

performance of an agent in an unseen, entirely 

new environment. Dropped performance reveals 

limitations in adaptability in the agent. 

Real-Time Constraints 

Latency and response time are key aspects of 

video games that require real-time decision-

making, and delays can have a substantial impact 

on performance. To compete with human players, 

RL agents must make quick judgments, 

necessitating algorithms that operate on a tight 

time schedule (38). For instance, in fast-paced 

games such as "Over watch," split-second 

decisions are very important. An RL agent would 

need to react practically immediately to the 

actions of the opponents in order to be effective, 

meaning that algorithms need to be highly fine-

tuned. Besides, in real-time strategy games, 

agents must strike a balance between long-term 

planning and instant action in managing 

resources, creating plans, and responding to 

opponents in real time. For instance, in "Age of 

Empires," an agent would have to collect 

resources, create structures, train soldiers, and 

generate a strategy against other players. This 

does require sophisticated planning and swift 

decision-making, posing serious obstacles to RL 

algorithms. 
 

Conclusion  
The relationship between video games and RL is 

complementary and keeps redefining possibilities 

in the gaming industry. Through this review 

paper, we have examined the fundamental ideas 

of RL and its use in a variety of gaming contexts—

from vintage arcade games to contemporary 

multiplayer experiences. Several RL algorithms 

have been analyzed in order to shed light on their 

advantages and disadvantages when it comes to 

solving challenging gameplay tasks, such as 

mastering subtle control tasks in immersive 

virtual environments or learning optimal 

strategies in strategic simulations (39). It seems 

certain that the incorporation of AI-driven agents 

into video games will go further in the future, 

providing players with previously unheard-of 

degrees of immersion, difficulty, and engagement. 

However, incorporating RL into video games 

involves a number of serious challenges that must 

be overcome in order to fully realize its potential. 

The key hurdles for RL in video games include 

computational complexity, environment design, 

generalization, and real-time limitations. These 

difficulties stem from the complex nature of video 

game settings, the variety of player interactions, 

and the requirement for agents to make quick, 

strategic judgments in real-time. Despite these 

obstacles, tremendous progress has been made in 

developing RL techniques and methodologies. 

Researchers have created novel algorithms, 

frameworks, and platforms for training RL agents 

in various gaming scenarios, paving the way for 

more intelligent and engaging gaming 

experiences. 

Future of RL in Video Games 

The future of RL in video games holds vast 

potential for ongoing research and innovation. 

Advances in algorithmic techniques, such as deep 

reinforcement learning, multi-agent systems, and 

hierarchical reinforcement learning, are poised to 

improve AI agents' capabilities in gaming 
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contexts. Furthermore, creating complex settings 

that effectively imitate real-world dynamics, such 

as dynamic weather patterns, complex physics 

interactions, and evolving player strategies, will 

require RL agents to adapt and learn robust 

methods. As researchers investigate new 

approaches to reward engineering, generalization, 

and transfer learning, RL agents are projected to 

become more versatile and adaptable across a 

variety of games, scenarios, and settings. 
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