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Abstract 
Skin cancer stands out as the predominant malignancy, necessitating prompt detection and intervention due to its 
potentially fatal nature. Distinguishing between cancerous and benign skin lesions poses a formidable challenge to 
visual assessment, underscoring the intricacy of accurate cancer detection. The inherent similarity in the appearances 
of various lesions further compounds the precision required for effective skin cancer identification. The rapidly 
evolving technological landscape, notably in the fields of machine learning and deep learning, has seen greater interest 
in resolving the categorization issues inherent in skin lesions. In our proposed research work, we deploy a deep 
learning model incorporating a pre-trained DenseNet architecture. This strategic utilization of advanced computational 
methods aims to enhance the discriminatory capabilities in skin cancer identification. For our research work, we used 
Melanoma cancer dataset, which contain 10540 dermoscopic labeled images. The study involves extensive 
preprocessing, including dataset inspection, label encoding, and distribution analysis. The research focuses on training 
DenseNet-201 architecture, evaluating its performance, and interpreting the results through various metrics. 
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Introduction
The integumentary system is the biggest organ in 

the human body, serving as a key barrier to 

external elements such as heat, light, and 

infections. It also contributes significantly to 

thermoregulation and serves as a reservoir for 

adipose tissue and water. Consequently, the 

imperative nature of identifying skin diseases is 

underscored. Among these conditions, skin cancer 

ranks prominently as one of the most prevalent 

forms of malignancy (1). Benign tumors typically 

exhibit a localized impact without causing 

significant harm to adjacent tissues, and they 

generally do not pose life-threatening risks. In 

contrast, malignant tumors can have profound 

consequences on an individual's well-being, 

necessitating immediate treatment to prevent 

further tissue damage and potential metastasis to 

other bodily regions (2). Recognizing the pivotal 

role of early detection and appropriate therapeutic 

interventions in enhancing patient recovery and 

survival rates. There is a rising attention in the 

possible application of intelligent computer 

systems as diagnostic tools for aiding healthcare 

professionals in the initial cancer identification (3). 

Melanoma stands out as a cancer with inherent 

unpredictability, often defying conventional 

expectations by manifesting even in its early stages 

(4). Skin diseases encompass diverse lesion types, 

characterized by variations in size, color, 

symmetry, bulge, and lesion margins. Artificial 

intelligence offers various diagnostic approaches, 

with one notable method relying on databases, 

particularly images. This strategy employs the 

principles of pattern recognition and deep 

learning, wherein iterative algorithms enable the 

computer to discern specific sets of clinical signs or 

images (5). This research introduces 

DenseNet201, a convolutional neural network 

based on the concept of dense connections, in 

which each layer is connected to every other layer 

in a feed-forward fashion. This dense connectivity 

promotes better information flow and gradient 

propagation throughout the network, resulting in 
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higher performance. Classification problems in 

several domains, including picture segmentation, 

brain tumor detection, pneumonia classification, 

cotton aphid severity rating, and galaxy 

classification, are handled by the proposed Dense 

Net model. These models have shown improved 

accuracy and performance compared to other 

classical classification models and neural network 

architectures. DenseNet models have the ability to 

transmit learned features backwards, reducing 

model parameters and improving local feature 

learning (6). DenseNet enhanced with a feature 

channel attention block for pneumonia 

classification. Their experimental results 

demonstrated superior performance in terms of 

F1-score, precision, accuracy, and recall compared 

to the standard DenseNet architecture (7). A 

modified DenseNet neural network model, a 

convolutional neural network architecture known 

for its dense connectivity patterns, to effectively 

classify MRI images into two distinct categories. 

This approach capitalizes on the dense 

connections between layers, allowing for efficient 

feature reuse and gradient flow throughout the 

network (8). By leveraging this modified 

architecture, the researchers achieved a notable 

accuracy rate of 93%, underscoring the model's 

effectiveness in accurately distinguishing between 

the specified categories within MRI images. An 

enhanced DenseNet classification network that 

surpasses ResNet50, ShuffleNetv2, GhostNet, 

MobileNetv3, and traditional DenseNet in 

classifying cotton aphid severity. This highlights 

CA_DenseNet_BC_100's superior accuracy in 

assessing cotton aphid infestations compared to 

other advanced models (9). DenseNet121, 

achieving an impressive test-set accuracy of 

approximately 89%. They utilized the Galaxy10 

DECals Dataset to investigate transfer learning 

from pre-trained convolutional neural network 

models for galaxy classification, achieving the high 

accuracy within just 30 minutes of training (10). 

For emotion identification and classification, 

Kousis I. (11) employed a dense net model that had 

been pre-trained on the ImageNet dataset, and 

they were more accurate than VGG19. By fine-

tuning a Dense net model that has been pre-trained 

in the ImageNet dataset, a transfer learning 

technique was utilized to increase the accuracy of 

emotion detection. The network model's goal is to 

extract features from pictures in order to recognize 

and categorize seven different emotional 

expressions. Existing machine learning and Deep 

learning techniques have made significant 

advancements in the detection and classification of 

skin cancer images. However, there are still some 

gaps that need to be addressed: Limited 

availability of large-scale and diverse skin cancer 

datasets: One of the major gaps in skin cancer 

image detection and classification is the lack of 

comprehensive and well annotated datasets (12). 

This can hinder training and generalizability of ML 

models, as they may not have enough diverse 

examples to learn from. Restricted interpretability 

of DL models: Convolutional neural networks have 

shown remarkable performance in image 

classification, but their interpretability is lacking. 

This means that it can be challenging to 

understand how and why these models make their 

predictions, which can be crucial in the medical 

field. Integration of clinical data: The combination 

of clinical data with image analysis represents a 

key gap in the identification and categorization of 

skin cancer images. The accuracy and 

dependability of skin cancer classification systems 

may be increased by integrating patient history, 

risk factors, and diagnostic data into the image 

analysis process. In general, DenseNet models 

have demonstrated efficacy and efficiency in 

handling classification tasks across several 

domains, achieving cutting-edge results on 

multiple benchmark datasets. 
 

Methodology 
In this study, we propose a methodology that 

integrates DenseNet-201 with a comprehensive 

dataset of dermoscopic images to develop an 

automated skin lesion detection system. The 

proposed approach involves several key steps, 

including data preprocessing, model training, and 

performance evaluation. Data preprocessing 

includes image augmentation techniques to 

increase the diversity of training samples and 

improve the model's generalization capabilities 

(13). The DenseNet-201 model is then trained on 

the preprocessed dataset using transfer learning, 

fine-tuning the pre-trained weights to adapt to the 

specific task of melanoma detection. 

Dataset Used 
The HAM10000 dataset has 10,015 dermatoscopic 

images distributed across seven classes. Below is 

the distribution of images for each class: 
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Melanocytic nevi (NV): 6,705 images (66.96%). 

Melanoma (MEL): 1,113 images (11.12%). Benign 

keratosis-like lesions (BKL): 1,099 images 

(10.98%). Basal cell carcinoma (BCC): 514 images 

(5.13%). Actinic keratoses (AKIEC): 327 images 

(3.27%). Vascular lesions (VASC): 142 images 

(1.42%). Dermatofibroma (DF): 115 images 

(1.15%) 

Image Properties 
The HAM10000 dataset consists of 10,015 high-

resolution RGB dermatoscopic images in JPEG 

format, typically around 600x450 pixels. The 

images are annotated with seven skin lesion 

classes but do not include segmentation masks. 

Image resolutions and aspect ratios vary, with 

common preprocessing steps including resizing 

(e.g., to 224x224), normalization, and data 

augmentation to handle lighting variations and 

artifacts like hair. The dataset also provides 

metadata such as age, sex, and lesion location. It’s 

widely used for classification tasks in skin lesion 

analysis. Figure 1 shows some sample images of 

benign and malignant lesions.
 

 

Figure 1: Benign and Malignant Images 
 

Data Preprocessing 
To facilitate effective model training, a robust 

preprocessing pipeline is established. This 

involves creating Pandas Data Frames for image 

paths and labels, label encoding, and shuffling the 

data to ensure unbiased model learning. 

HAM-10000 Multiclass to Binary 

Conversion 
Creating a binary dataset from the HAM10000 

dataset involves classifying the images into two 

categories, typically based on the presence or 

absence of a specific condition, such as melanoma 

vs. non-melanoma. Following steps are used to 

convert multiclass to binary data. Step 1: Data 

Extraction: Load the HAM 10000 dataset and its 

annotations and Identify and separate images 

labeled as 'mel' (melanoma). Step 2: Label 

Assignment: Assign the label '1' to images of 

melanoma (mel). Assign the label '0' to images of  

all other categories (non-melanoma). Step 3: Data 

Balancing: Under-sampling: Randomly reducing 

the number of non-melanoma images. Over-

sampling: Replicating melanoma images. Step 4: 

Preprocessing: Standardize image sizes, normalize 

pixel values and apply data augmentation 

techniques such as rotation, flipping and scaling—

to enhance the diversity of the training data. Step 

5: Splitting Data:  Split the dataset into training, 

validation and test sets, ensuring that the 

distribution of melanoma and non-melanoma 

images is maintained in each subset. The binary 

dataset derived from HAM10000 would typically 

be used for a focused classification task, such as 

distinguishing between melanoma (mel) and non-

melanoma lesions. This simplifies the multi-class 

classification problem into a binary classification 

problem, which in turn useful for machine learning 

or Deep Learning models.

 

 
Figure 2: Original Train and Test Label Distribution 
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Data Augmentation
A complex data augmentation layer is provided to 

address over fitting problems and improve the 

model's generalizability. Horizontal and vertical 

flips, together with random zooming, help to 

diversity the training dataset, giving the model a 

more sophisticated grasp of melanoma features. 

From the original dataset, 85% of the photos are 

utilized for training, while the remaining 15% are 

used for testing. Figure 2 depicts the original train 

and test label distribution, whereas Figure 3 

depicts the effect of augmentation on the original 

training and testing labels (14).
 

 

 
Figure 3: Train and Test Label Distribution After 

Augmentation 

Dense Net201 Model Architecture
The DenseNet-201 architecture is a deeper version 

of DenseNet with 201 layers. In the provided code, 

the DenseNet-201 model is applied for the 

ImageNet dataset and then tuned for the 

melanoma classification. Dense Convolutional 

Networks, or DenseNet, connect each layer in a 

feed-forward fashion. This novel design handles 

various deep learning issues, including the 

vanishing-gradient problem. DenseNet supports 

strong feature propagation, facilitates effective 

feature reuse, and significantly decreases the 

overall amount of parameters by linking one layer 

to the next. Dense Net’s key premise is that 

convolutional networks may achieve increased 

depth, accuracy, and training efficiency by 

establishing shorter connections between layers 

near the input and those near the output. This 

design concept promotes efficient information 

flow across the network. Dense Blocks: DenseNet 

introduces the notion of dense blocks, in which 

each layer takes input from every previous layer. 

This dense connection network helps to alleviate 

the vanishing gradient problem and allows for 

improved feature reuse. In a Dense net block, each 

layer gets feature maps from the layers before it 

and passes them on to the layers after it. This 

creates dense connectivity between layers. 

Mathematically, 𝐻𝑙  denote the feature maps 

produced by the lth layer. Where 𝑙 = 0 represents 

the input layer. The output of the lth layer is 

computed by the following equation. 

𝐻𝑙 = 𝐻𝑙−1 ⊕  𝐻𝑙 . 𝐹𝑙                                                        [1]                 

Bottleneck Layers: DenseNet utilizes bottleneck 

layers, consisting of 1x1 convolutional layers, to 

reduce the number of input feature maps before 

passing them to 3x3 convolutions as shown in 

below equation. This aids in reducing 

computational complexity while preserving 

representational capacity. 

 𝐹𝑙 = 𝐻𝑙+1[𝐻1 (𝐶𝑜𝑛𝑣 (𝐻𝑙)]                                          [2] 

Transition Layers: Transition layers are used 

between dense blocks to limit the expansion of 

feature maps and minimize spatial dimensions. 

These transition layers are often composed of 1x1 

convolution, batch normalization, and pooling 

procedures. The transition layer's output may be 

expressed mathematically as 

 𝐻𝑙 = 𝐻1[𝐴𝑣𝑎𝑟𝑔𝑒 𝑝𝑜𝑜𝑙𝑖𝑛𝑔(𝐹𝑙)]                                 [3] 

Global Average Pooling (GAP): Instead of using 

fully connected layers at the end of the network, 

DenseNet employs global average pooling. This 

operation calculates the average value of each 

feature map, resulting in a single value for each 

channel. GAP reduces the number of parameters 

and helps mitigate over fitting. Given a 3D tensor 

of dimensions (H,W,C)where H is the height, W is 
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the width, and C is the number of channels (feature 

maps), Global Average Pooling computes the 

average value for each feature map as follows: For 

each channel c (where c=1, 2….. C): 

𝐺𝐴𝑃𝐶 =
1

𝐻.𝑊
∑  𝐻

𝑖=1 ∑  𝑊
𝑗=1 𝑋𝑖,𝑗,𝐶                                     [4] 

Where Xi, j, C is the value at position (i, j) in the Cth 

feature map, GAPc is the result of the Global 

Average Pooling for the ccc-th feature map. Growth 

Rate: The growth rate is a hyper parameter that 

defines how many new feature maps each layer in 

a dense block should produce. It determines the 

width of the network and affects the model's 

capacity. Figure 4 shows the detailed DenseNet201 

architecture with its input and output layers.  Let 

the growth rate be denoted by k. Consider the lth 

layer in a dense block. The number of input feature 

maps to this layer is determined by the original 

number of feature maps plus the feature maps 

produced by all the previous layers in that block.   

𝐼𝑛𝑝𝑢𝑡 𝑡𝑜 𝑙𝑎𝑦𝑒𝑟 𝑙 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑝𝑠 + 𝑘 ×

(𝑙 − 1)                                                                              [5] 

DenseNet201 Feature Extractor (densenet201): 

The base of the model is DenseNet201, a 

convolutional neural network renowned for its 

dense connectivity. It operates as a feature 

extractor, transforming input images through 

multiple convolutional layers, dense blocks, and 

transition layers. The resulting feature maps have 

dimensions of (7, 7, 1920). Output Shape: (None, 7, 

7, 1920), Parameters (Trainable): 18,321,984 

(These parameters are adapted during model 

training to learn image representations.). Global 

Average pooling 2D: Following feature extraction, 

global average pooling is applied to spatially 

condense the feature maps. This operation 

computes the average value for each feature map, 

resulting in a reduced spatial dimensionality. 

Output Shape: (None, 1920) Parameters 

(Trainable): 0 (No trainable parameters in this 

layer; it performs a fixed operation.). Dense Layer 

for Intermediate Representation (dense_2): A 

dense layer with 128 units and Rectified Linear 

Unit (ReLU) activation is introduced to capture 

higher-level abstractions from the global average 

pooled features. Output Shape: (None, 128) 

Parameters (Trainable): 245,888 (Trainable 

parameters tuned to distill meaningful 

information.). Final Dense Layer for Binary 

Classification (dense_3): The final dense layer 

comprises 2 units, employing a sigmoid activation 

function for binary classification (distinguishing 

'malignant' or 'benign'). Output Shape: (None, 2) 

Parameters (Trainable): 258 (Adjustable 

parameters enabling the model to discern between 

the two classes.)In summary, the architecture 

involves a robust feature extraction phase with 

DenseNet201, followed by dimensionality 

reduction through global average pooling. 

Subsequent dense layers refine the features, 

culminating in a final layer for binary classification. 

The model encompasses 18,569,130 trainable 

parameters, facilitating the learning of intricate 

image representations. Above figure 4 (A) shows 

the detailed DenseNet201 layered architecture 

with its input and output layers and Figure 4 (B) 

indicates DenseNet 201 configuration. 

Model Training: The training phase involves the 

compilation of the model with appropriate loss 

functions (binary cross entropy loss) and 

optimizers like Adam. Noteworthy callbacks, such 

as early stopping and learning rate reduction, are 

integrated to optimize training efficiency. These 

callbacks are used to prevent over fitting and 

enhance training efficiency (15). The model 

undergoes training epochs on the designated 

training dataset, periodically validated on an 

independent dataset. Model Evaluation: The 

trained model is evaluated using various metrics 

such as accuracy, precision, recall, and F1-score. 

The confusion matrix and Region of convergence 

curves are employed to gain insights into the 

model's classification and performance.  

Hyper Parameter Optimization 
In the DenseNet201 melanoma classifier, binary 

cross-entropy loss and the Adam optimizer were 

used to ensure adaptive learning. A batch size of 32 

balanced efficiency and performance with models 

trained for 15 epochs to prevent over fitting. 

DenseNet201 lacks dropout layers by default. 

Adding Dropout (e.g., with a rate of 0.2 to 0.5) after 

dense layers can prevent over fitting, especially for 

small or imbalanced datasets like HAM10000. 
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Figure 4 (A): DenseNet201 Layered Architecture (B): DenseNet201 Configuration 
 

Results and Discussion 
The DenseNet-201 model shows encouraging 

results in melanoma classification, with an 

accuracy of 92%. Metrics such as precision, recall, 

and F1-score indicate that malignant and benign 

classes function similarly. The study highlights the 

implications of these findings in terms of 

melanoma diagnosis. In Figure 5, when the number 

of epochs grows, training and validation loss 

decrease dramatically, while training accuracy 

rises to 94% and validation accuracy approaches 

93%.

 

  
Figure 5: Densenet-201 Model Loss and Accuracy Curves for Training and Validation Samples 
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Table 1: Densenet201 Performance Comparison with Existing Models 

   Model Precision Recall F1-score Training 

Accuracy 

Testing 

accuracy 

ResNet (16) 84.94 97.50 90.79 92.78 85.20 

VGG-16 (17) 88.27 95.18 91.59 88.83 86.09 

Mobilenet (18) 84.62 94.57 89.32 92.93 82.62 

DenseNet201 92.04 91.39 91.41 94.18 91.39 

   

 
Figure 6: Confusion Matrix of the Proposed Densenet201 Model 

In Table 1, DenseNet201 demonstrated high 

precision (92.04%) and recall (91.39%), resulting 

in an F1-score of 91.41%. This indicates a balanced 

performance in identifying both positive and 

negative instances. The model exhibited strong 

training accuracy of 94.18% and maintained a high 

testing accuracy of 91.39%, suggesting its 

robustness in generalization. Overall, 

DenseNet201 emerged as the top-performing 

model in terms of F1-score and testing accuracy, 

making it a promising choice for image 

classification tasks. However, the selection of the 

most suitable model should consider specific 

application requirements and computational 

constraints. In Figure 6, the Confusion matrix for 

DenseNet201 can be constructed to provide a 

more detailed understanding of its performance in 

classifying instances. A confusion matrix is a table 

that is often used to describe the performance of a 

classification model on a set of test data for which 

the true values are known. Each row of the matrix 

represents the instances in an actual class, while 

each column represents the instances in a 

predicted class.
 

 
Figure 7: Receiver Operating Characteristics (ROC) Curve for Binary Classification 

The Receiver Operating Characteristics (ROC) 

curve shown in Figure 7 is a graphical 

representation used to evaluate the performance 

of a binary classification model. It plots the True 
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Positive Rate (TPR) against the False Positive Rate 

(FPR) at various threshold settings. The curve rises 

sharply towards the top-left corner of the plot, 

indicating a high True Positive Rate and a low False 

Positive Rate. This suggests that the model is 

effective in identifying true positives while 

minimizing false positives. The ROC value for the 

model is 0.95, which indicates excellent 

discriminatory power. An AUC value close to 1.0 

signifies that the model performs well in 

differentiating between melanoma and non-

melanoma cases. Figure 8 represents simulated 

results for Actual vs. predicted classification labels 

using Densenet201 algorithm. The majority of the 

model's predictions align with the actual labels, 

often with very high probability scores (e.g., 

99.99% for malignant and benign cases). This 

indicates that DenseNet-201 is highly confident in 

its correct classifications. The images reveal some 

instances of misclassification, for example, one 

image labeled "Actual Label: malignant" is 

predicted as benign with a probability of 67.61%. 

This indicates that the model occasionally fails to 

detect certain melanoma cases. There are also 

benign cases misclassified as malignant, such as an 

image with an actual benign label but predicted as 

malignant with a probability of 85.05%. This 

suggests that some benign lesions exhibit features 

that the model mistakenly identifies as melanoma. 

The high probability scores in correctly identified 

malignant cases (e.g., 100.00% probability) 

demonstrate the model's strong sensitivity to 

melanoma features. This is crucial for minimizing 

missed diagnoses of melanoma, which can have 

serious clinical implications. In this study, we 

evaluated the performance of four popular CNN 

architectures: ResNet, VGG-16, Mobilenet, and 

DenseNet201, for the task of image classification. 

Each model was trained and tested on a 

standardized dataset to assess its precision, recall, 

F1-score, training accuracy, and testing accuracy. 

ResNet achieved a high recall of 97.50%, indicating 

its effectiveness in correctly identifying positive 

instances from the dataset. However, its precision 

of 84.94% suggests a moderate level of false 

positives. The F1-score, which combines precision 

and recall, was calculated at 90.79%. The model 

demonstrated robust performance during training 

with an accuracy of 92.78%, which slightly 

dropped to 85.20% on unseen test data. VGG-16 

exhibited slightly higher precision compared to 

ResNet, with a value of 88.27%, while maintaining 

a recall of 95.18%. Consequently, the F1-score for 

VGG-16 was computed at 91.59%, indicating a 

balanced performance in terms of precision and 

recall. The training accuracy was recorded at 

88.83%, with a marginal decrease to 86.09% on 

the testing dataset. The DenseNet201 model, while 

powerful for skin melanoma classification, has 

several limitations. It requires high computational 

resources due to its deep architecture and large 

number of parameters, leading to longer training 

times and high memory consumption, which can 

be challenging for high-resolution dermatoscopic 

images. Additionally, DenseNet201 is prone to 

over fitting, especially on smaller datasets like 

HAM10000, and struggles with class imbalance, 

often favoring majority classes over rare ones like 

melanoma. Extensive hyper parameter tuning is 

often necessary to optimize performance, and fine-

tuning for domain-specific tasks can be complex in 

transfer learning scenarios. Furthermore, 

DenseNet201, like other deep learning models, 

lacks interpretability, which is crucial in medical 

applications where explaining ability is important 

for decision-making. The model's performance is 

also sensitive to image quality, with noise, artifacts, 

and lighting variations affecting predictions. 

Despite its dense connections, training such a deep 

network still poses risks like the vanishing 

gradient problem, particularly when fine-tuning 

for specialized tasks like melanoma classification.
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Figure 8: Actual vs. Predicted Classification Results with Probability 

 

Conclusion  
This research successfully explores the application 

of deep learning models in melanoma 

classification. The comprehensive preprocessing 

pipeline, data augmentation techniques, and the 

adoption of a powerful CNN architecture 

contribute to the model's robust performance. The 

study concludes with insights into potential future 
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improvements and applications of the developed 

model in clinical settings. In conclusion, research 

studies demonstrate that DenseNet architectures 

offer significant advantages in skin melanoma 

detection tasks, including improved accuracy, 

efficient parameter usage, effective feature 

extraction, and interpretability of learned features. 

These findings highlight the potential of DenseNet-

based models as valuable tools for assisting 

dermatologists in early and accurate diagnosis of 

melanoma.  

Due to its deep architecture, DenseNet-201 is 

prone to over fitting, especially when trained on 

small or imbalanced datasets. This can result in 

poor generalization to new, unseen data, limiting 

its practical applicability. DenseNet-201, like many 

deep learning models, functions as a black box, 

making it challenging to interpret its decision-

making process. This lack of interpretability can be 

a barrier to clinical acceptance, as medical 

professionals often require understanding of how 

decisions are made. DenseNet-201 has 

demonstrated impressive performance in various 

image classification tasks, including melanoma 

detection; several limitations and challenges need 

to be addressed for its effective deployment in 

clinical settings. DenseNet-201 is computationally 

intensive, requiring significant processing power 

and memory. This can be a challenge for 

deployment on standard medical devices or in 

settings with limited computational resources. 

In conclusion, the DenseNet201 model 

demonstrates high potential for skin melanoma 

detection due to its deep architecture and efficient 

feature reuse. Its dense connectivity allows for 

better gradient flow, making it effective in 

extracting complex patterns from dermatoscopic 

images. However, the model's success is 

contingent on several factors. While DenseNet201 

achieves impressive performance in terms of 

accuracy and classification metrics, it comes with 

significant computational demands, requiring 

substantial memory and long training times. 

Additionally, over fitting remains a challenge, 

especially when working with smaller or 

imbalanced datasets like HAM10000. Mitigating 

these issues through data augmentation, 

regularization, and hyper parameter tuning is 

essential to improve generalization. Despite its 

power, DenseNet201's lack of interpretability 

limits its direct applicability in clinical settings, 

where explain ability is crucial for medical 

decision-making. Furthermore, sensitivity to 

image quality and class imbalance can hinder 

model performance, necessitating careful 

preprocessing and weighting strategies. Overall, 

while DenseNet201 proves to be an effective 

model for skin melanoma detection, addressing 

these limitations is key to making it a more robust 

and clinically viable tool. 
 

Abbreviations 
ML: Machine learning, DL: Deep learning, CNN: 

Convolutional Neural Network, GAP: Global 

Average Pooling, ReLU: Rectified Linear Unit, ROC: 

Region of convergence, TPR: True Positive Rate, 

FPR: False Positive Rate. 
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