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Abstract 
Sign language recognition (SLR) plays a crucial role in facilitating communication for the hearing-impaired community. 
Conventional methods for SLR have encountered difficulties in attaining both high precision and efficiency because of 
the intricate characteristics of sign language motions and the variability in articulation. We propose a novel framework 
for enhancing SLR by leveraging the efficiency of EfficientNet-B0 as a feature extractor and incorporating a 
transformer-based decoding mechanism for classification. The objective of our method is to enhance the precision and 
computational effectiveness of SLR systems, thereby making them more viable for real-world applications. 
Experimental results on two standard, commonly used sign language datasets: American Sign Language (ASL) and ASL 
with Digits. The proposed model achieves accuracies of 99.59% on the ASL dataset and an outstanding accuracy of 
99.97% on the ASL with Digits dataset, outperforming all other state-of-the-art methods. These results highlight the 
effectiveness of our framework in accurately recognizing sign language gestures, making it highly suitable for real-
world applications. Our study contributes to the advancement of SLR research by introducing a novel methodology that 
combines the efficiency of EfficientNet-B0 with the expressive capabilities of transformer-based decoding, ultimately 
improving communication accessibility for individuals who rely on sign language. 
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Introduction
Sign language, as a visual-gestural language, plays 

a crucial role in facilitating communication for 

those who are deaf or hard-of-hearing. It allows 

them to effectively convey their thoughts and 

engage with others. Nevertheless, despite its 

significance, proficient communication via sign 

language might prove to be difficult owing to the 

limited comprehension among the general 

populace. Sign language recognition (SLR) systems 

strive to overcome this communication barrier by 

automatically understanding and converting sign 

language motions into written or spoken language, 

therefore increasing communication between 

those who are deaf and the wider population(1, 

2).Traditionally, SLR has often used manual 

feature extraction techniques, which are then used 

in conjunction with traditional machine learning 

algorithms focusing on techniques like Support 

Vector Machines (SVM) and Hidden Markov 

Models (HMM). These approaches often rely on 

handcrafted features and may struggle with 

capturing intricate details in sign language 

gestures (3, 4). Although these systems have 

shown potential, they encounter constraints in 

dealing with the unpredictability and intricacy of 

sign language motions, as well as the need for 

immediate processing in real-world applications. 

In addition, individuals may have difficulties in 

applying concepts to various sign languages and 

adapting to varied styles of articulation. Recent 

advancements in deep learning, specifically in 

convolutional neural networks (CNNs) and 

Transformer architectures, has created new 

opportunities for speech recognition. 

Convolutional Neural Networks (CNNs) are very 

effective in acquiring hierarchical representations 

from visual data, while Transformers (5) have 

shown exceptional achievements in problems 

involving sequence modeling, such as natural 

language processing and computer vision (2, 6). 

Using these improvements, we suggest a new 

framework for improving SLR by merging the 

efficiency of EfficientNet-B0 with the expressive 

capabilities of Transformer-based decoding.  
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Tan et al. proposed the SDViT model, which uses 

techniques such as transfer learning, fine-tuning of 

pertained ViTs, early stopping, and knowledge 

distillation to achieve excellent results in hand 

gesture recognition. In ensemble learning, stacking 

distilled student models improves model stability, 

accuracy, and generalization capabilities. 

Simplified student models may not fully capture 

the intricate details found in the original ViT, which 

could potentially hinder the model's performance 

(7). Miah et al. introduced a neural network that 

focuses on multistage spatial attention for hand 

gestures. They also developed a deep learning 

model that combines feature fusion to improve 

hand gesture recognition. Nevertheless, the 

discussion on challenges related to real-time 

applications is rather concise (8). Kumari and 

Anand propose a novel hybrid CNN-LSTM 

framework that focuses on accurately recognizing 

isolated sign language gestures. They chose the 

MobileNetV2 backbone model due to its 

lightweight structure and its capability to extract 

significant features. Additionally, they optimize the 

LSTM component with an attention mechanism to 

selectively focus on important gesture cues. Their 

method demonstrates an average accuracy of 

84.65% on the widely recognized WLASL dataset 

(9). The study presents a framework consisting of 

a six-layer Convolutional Neural Network 

(ConvNet) for feature extraction. The research 

seeks to address limitations found in existing sign 

language recognition systems, specifically dealing 

with low accuracy for certain words caused by 

similar postures. Additionally, create datasets 

named BdSL_OPSA22_STATIC1 and 

BdSL_OPSA22_STATIC2 (10). For sign language 

recognition, the authors present a specialized 

multi-headed CNN model. They utilize two input 

channels, incorporating both images and hand 

landmarks to ensure reliable data processing. 

Through the integration of these inputs, the model 

attains its peak accuracy of 98.98%. Nevertheless, 

the accuracy experiences a slight decrease to 

96.29% when exclusively relying on images, the 

accuracy drops to 96.29%. The study highlights the 

impact of real-life application scenarios on model 

accuracy, emphasizing the presence of noise (11). 

This study presents the SLRNet-8 architecture, 

which utilizes Convolutional Neural Networks 

(CNNs) to recognize American Sign Language 

(ASL). Combining digits and alphabets results in a 

slight decrease in the recognition rate. We utilize a 

range of datasets that encompass ASL gestures, 

digits, finger spelling, and alphabets for both 

training and evaluating our models (12). The 

authors present SASLRM, a system specifically 

developed to identify Indian Sign Language (ISL) 

words during emergency situations. An advanced 

module for selecting key frames improves 

accuracy by eliminating unnecessary frames. In 

addition, combining convolution and SA modules 

improves the performance of SLRS. The study 

addresses the difficulties associated with self-

occlusion in sign language recognition. The model 

consistently achieves an average accuracy of 

95.627 repeated cross-validations (13). 

EfficientNet-B0 (14) is a pretrained CNN 

architecture that is extremely lightweight and 

produces top-notch performance on image 

classification tasks, all while keeping 

computational complexity at a minimum. We 

selected EfficientNet-B0 over alternative 

architectures like ResNet and Inception due to its 

superior balance between accuracy and 

computational efficiency. Through utilizing the 

pre-trained weights of EfficientNet-B0, 

researchers can effectively extract distinctive 

characteristics from photos of sign language. 

EfficientNet-B0's compound scaling method allows 

for balanced scaling of network depth, width, and 

resolution, enhancing its ability to capture 

intricate features in sign language gestures 

without incurring excessive computational costs. 

The extracted characteristics are then inputted 

into a Transformer-based decoder for the purpose 

of sequence modeling and classification. This 

allows the model to effectively represent the 

intrinsic temporal dependencies and spatial 

correlations seen in sign language motions. This 

paper introduces our methods for improving SLR 

utilizing EfficientNet-B0 with Transformer-based 

decoding. We assess the effectiveness of our 

method on commonly used sign language datasets, 

such as American Sign Language (ASL) (15). The 

results of our experiment show that our suggested 

framework performs very well in terms of both 

accuracy and computing economy, making it highly 

suitable for real-world applications. In addition, 

we do ablation experiments to examine the 

individual contributions of each component in our 

framework and get a deeper understanding of its 

efficacy. Our Contribution to the research paper, 
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we proposed EfficientNet-B0 a pretrained CNN 

module to extract 2D characteristics from sign 

language images. The Global Average Pooling 

(GAP) layer is utilized to compress the features 

from EfficientNet-B0. We have developed a 

decoding module that utilizes the transformer 

architecture. The system comprises three 

components: batch normalization, FFN, and the 

MHSA mechanism. The paper is structured as 

follows: Section 2 suggests using EfficientNet-B0 

and a multi-head self-attention network to 

implement sign language recognition. Section 3 

presents an in-depth description of the 

experimental configurations, technical 

specifications, and metrics used to evaluate the 

model. Section 4 shows the outcomes of the 

suggested approaches. Section 5 presents the 

study's conclusion. 
 

Methodology 
Our proposed framework for Sign Language 

Recognition (SLR) integrates two primary 

components: feature extraction utilizing 

EfficientNet-B0 (14) and classification utilizing a 

Transformer-based decoder (5). The framework is 

illustrated in Figure 1. In selecting the architecture 

for our SLR framework, we opted for a 

combination of EfficientNet-B0 and a Transformer-

based decoder due to several key reasons: 

EfficientNet-B0 offers a highly efficient CNN 

architecture with significantly fewer parameters 

and lower computational cost compared to 

alternatives like ResNet and Inception. Its 

compound scaling method and inclusion of 

Squeeze-and-Excitation (SE) blocks enhance its 

ability to capture intricate features in sign 

language images, making it ideal for applications 

requiring real-time processing and deployment on 

devices with limited resources. The Transformer 

architecture excels at modeling long-range 

dependencies and capturing temporal dynamics 

through its self-attention mechanism. This is 

crucial for accurately recognizing sign language 

gestures, which often involve complex spatial-

temporal patterns. By integrating EfficientNet-B0's 

powerful feature extraction with the 

Transformer's advanced sequence modeling, the 

model effectively captures both spatial and 

temporal aspects of sign language gestures. The 

use of a Global Average Pooling (GAP) layer further 

optimizes the feature representation for the 

Transformer decoder. In our approach, we first 

preprocess the sign language images, which 

involve resizing them to a fixed size suitable for 

EfficientNet-B0 input and normalizing pixel values 

to the range [0, 1]. Additionally, data augmentation 

techniques such as random cropping and rotation 

may be applied to augment the dataset. After 

preprocessing, we leverage the pre-trained 

weights of EfficientNet-B0 to extract 

discriminative features from the sign language 

images. Notably, we incorporate a Global Average 

Pooling (GAP) (16) layer after EfficientNet-B0 to 

condense the spatial information across the 

feature maps, yielding a compact feature 

representation. These features are subsequently 

passed to the Transformer-based decoder for 

classification. We construct a simplified 

transformer decoding component with N = 3 

blocks. Each block has a multi-head self-attention 

mechanism, an FFN, and batch normalization. 

EfficientNet-B0 
The Efficient Net architecture represents a notable 

advancement in pretrained convolutional neural 

networks (CNNs), particularly distinguished by its 

adeptness in parameter efficiency and 

computational speed. Its development 

incorporates a systematic scaling approach, both 

simple and compound, to incrementally augment 

the dimensions of the CNN models, encompassing 

depth, width, and resolution uniformly. The 

Efficient Net family consists of seven models, 

namely EfficientNet-B0 to EfficientNet-B7. This 

study utilized EfficientNet-B0 to showcase its 

superiority over ResNet-50 in parameter count 

and Floating-Point Operations per Second (FLOPs), 

underscoring its efficacy in feature extraction. In 

selecting EfficientNet-B0 for our SLR framework, 

we considered both its computational efficiency 

and its performance benefits for visual gesture 

recognition. EfficientNet-B0's architecture, 

featuring MBConv blocks and SE mechanisms, is 

adept at capturing fine-grained spatial features 

essential for distinguishing between similar sign 

language gestures. Its compound scaling method 

allows for balanced model scaling, improving the 

network's capacity to learn intricate patterns 

without over fitting. With significantly fewer 

parameters and lower computational demands, 

EfficientNet-B0 enables real-time processing and 

deployment on resource-constrained devices,      

which is critical for practical SLR applications. 

Figure 2 presents the schematic representation of 
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the EfficientNet-B0 architecture, arranged into 

seven blocks according to channel count, striding 

configurations, and convolutional filter 

dimensions. 
 

 

 
Figure 1: Proposed Framework 

 

Figure 2: EfficinetNet-B0 Architecture (14) 

 
Figure 3: MBConv Model 

 

The core component of EfficientNet-B0 is the 

mobile inverted bottleneck (MBConv), which is 

inspired by the MobileNet paradigm. The MBConv 

architecture is shown in Figure 3. It has a dropout 

layer, two convolutional layers (k1×1), a depth-

wise convolutional layer, and a Squeeze and 
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Excitation (SE) block. The initial convolutional 

layer primarily expands the channel, while depth-

wise convolution minimizes the parameter count. 

The incorporation of the SE block accentuates the 

interplay among channels by assigning varying 

weights to each channel, deviating from uniform 

allocation. Finally, the subsequent convolutional 

layer facilitates channel compression. EfficientNet-

B0 used Swish activation function (17). 

𝑓𝑠𝑤𝑖𝑠ℎ =
1

1 + 𝑒−𝛽𝑥
 #             [1]  

Where β is a parameter that can be learned during 

the training of the CNN. Batch normalization (18), 

normalizes the output of the convolutional layer to 

stabilize and speed up training. It applies the 

following transformation to each feature map: 

𝑌 =
𝑋 − 𝜇

√𝜎2 + 𝜖
∗  𝛾 + 𝛽 #         [2]  

Where X is the input feature map, μ and σ are the 

mean and standard deviation computed over the 

mini-batch, γ and β are learnable scale and shift 

parameters, and ϵ is a small constant to avoid 

division by zero. 

Global Average Pooling Layer  
The Global Average Pooling (GAP) layer is inserted 

after the last convolutional layer to reduce spatial 

dimensions and summarize feature maps. 

𝑋𝐺𝐴𝑃 = 𝐺𝐴𝑃(𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑁𝑒𝑡 − 𝐵0(𝑖𝑚𝑎𝑔𝑒𝑠 ))#[3] 

Transformer Based Decoder  
The global average pooled feature vector 𝑋𝐺𝐴𝑃is 

undergoing a transformer-based decoder for 

classification. Figure 4, illustrates the transformer-

based encoder architecture. The Transformer's 

self-attention mechanism effectively captures 

spatial and contextual relationships within the 

images, allowing the model to weigh the relevance 

of different parts of the image, enhancing its ability 

to recognize complex gestures. While our study 

focuses on static sign language recognition, the 

Transformer's self-attention mechanism allows 

the model to capture dependencies within the 

input data. Even in static images, the self-attention 

mechanism can model relationships between 

different parts of the image, effectively capturing 

spatial dependencies that are crucial for 

recognizing complex gestures. 

Matrices 𝑊𝑞 ,  𝑊𝑘 and 𝑊𝑣 with    𝑋𝐺𝐴𝑃
𝑖, to generate 

three vectors   𝐾𝑖, 𝑄𝑖  and 𝑉𝑖   are key, query and 

value, respectively. 

𝑄𝑖 = 𝑊𝑞 ∙ 𝑋𝐺𝐴𝑃
𝑖;  𝐾𝑖 = 𝑊𝑘 ∙ 𝑋𝐺𝐴𝑃

𝑖;   𝑉𝑖 = 𝑊𝑣 ∙

𝑋𝐺𝐴𝑃
𝑖   #             [4] 

 

 
Figure 4: Transformer Based Decoder 

The attention mechanism computes the output for 

each token by first applying the SoftMax function 

to the scaled dot product of the query and key 

vectors,𝑄𝑖  and 𝐾𝑖. This result is then multiplied by 

the value vector𝑉𝑖 , producing a refined 

representation that effectively captures the 

importance of each token within its context in the 

input sequence. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑖 , 𝐾𝑖 , 𝑉𝑖)

= 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 (
𝑄𝑖 × (𝐾𝑖)𝑇

√𝑑𝑘

)

∙ 𝑉𝑖#[5]  

After generating the attention outputs, multiple 

attention heads' outputs are concatenated through 

the Multi-Head Self-Attention (MHSA) layer, 

combining information from different 

representation subspaces. 

𝑀𝐻𝑆𝐴 = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ1, ℎ2, … , ℎ𝑖 , … , ℎ𝐻)𝑊𝑜#     [6]  

where, ℎ𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑖 ∙ 𝑊𝑖
𝑄 , 𝐾𝑖 ∙ 𝑊𝑖

𝐾 , 𝑉𝑖 ∙ 𝑊𝑖
𝑉); 

Our model incorporates three such attention 

heads, and the resulting output from the attention 

layer has a dimensionality of 512.The 

concatenated output from the MHSA layer is then 

passed into a position-wise feed-forward network 
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(FFN). This network consists of two sequential 

linear transformations, with a non-linear 

activation function (GeLU) applied between them. 

𝐹𝐹𝑁(𝑥) = 𝜎(𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 #       [7]  

where, 𝑊1, 𝑊2denote the weights of the feed-

forward network,𝑥corresponds to the output from 

the MHSA layer, represented as𝑂𝑢𝑡𝑝𝑢𝑡𝑀𝐻𝑆𝐴 =

𝑀𝐻𝑆𝐴1, … , 𝑀𝐻𝑆𝐴𝑖, … , 𝑀𝐻𝑆𝐴𝑛 . The 

parameter𝑏1𝑏2represent biases, while 𝜎refers to 

the 𝐺𝑒𝐿𝑈(∙) transfer function. After processing 

through the FFN, the output is subjected to a 

normalization layer, culminating in the final output 

of the single-layer encoder. 

𝑦𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 = 𝑓𝑙𝑎𝑡𝑡𝑒𝑛(𝐹𝐹𝑁(𝑥))#       [8]  

In the final stage, a SoftMax activation function is 

employed to predict the probability distribution of 

each token𝑦𝑖in the response, determining the most 

likely outcomes based on the refined 

representations created by the preceding layers. 

𝑝(𝑦0, … , 𝑦𝑖−1) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑊 

∙  𝑦𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟) #      [9]  

This architecture leverages the self-attention 

mechanism's ability to weigh the relevance of 

different tokens in a sequence, allowing for a more 

nuanced understanding of the input. The model 

can capture more prosperous relationships within 

the data by incorporating multiple attention heads 

and combining their outputs. The subsequent feed-

forward network and normalization steps refine 

these representations, ensuring a comprehensive 

understanding of the input sequence informs the 

final predictions (19). To balance model 

complexity and performance, we employed three 

Transformer layers in our architecture. We set the 

number of attention heads to three, which allows 

the model to capture information from different 

representation subspaces effectively. The 

dimensions of the query, key, and value vectors 

were configured to be 64. We utilized the Gaussian 

Error Linear Unit (GeLU) activation function in the 

Feed-Forward Network (FFN) due to its smooth 

and non-linear properties. To prevent overfitting, 

a dropout rate of 0.2 was applied. 

Experimental Setups  
Datasets 

This section provides a comprehensive overview 

of the datasets employed for performance 

evaluation. The ASL dataset consists of 24 classes 

that capture alphabet gestures from A to Y, 

excluding J and Z. In addition, the ASL dataset 

comprises 36 classes, consisting of 26 alphabets 

and 10 digits (15). Table 1 presents a succinct 

overview of the aforementioned datasets. 

Implementation Details 

We employ the EfficientNet-B0 pretrained CNN 

model for feature extraction and a transformer-

based decoder for classification. We used 

categorical cross-entropy loss as the training 

method, and the Adam optimizer carried out 

weight updates. This optimizer enhances model 

performance by fine-tuning weight values. To 

optimize the learning rate, the training involved 

100 epochs and incorporated a learning rate 

scheduler. We set the dropout ratio at 0.3 to 

address over fitting issues. Table 2 presents a 

comprehensive summary of the hyper parameters. 

We employ data augmentation as a solution for 

addressing the issue of class imbalance. 
 

 

Table 1: Summary of the Datasets 

Datasets Number of Classes Total Samples 

ASL 24 65774 

ASL with digits 36 2515 
 

 

Table 2: Training Parameter List of Transformer-Based Encoder 

Parameters Values 

Learning rate 0.0001 

Batch size 64 

Epoch 100 

Dropout 0.3 

Optimizer Adam 

Scheduler Learning rate scheduler 

Loss function Categorical cross entropy 
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We conduct the experiments using the Linux-Mint 

Cinnamon Operating System. We execute the 

training process of the proposed model on a high-

performance system featuring an i7 processor, 32 

GB of RAM, and an 8GB NVIDIA GTX 4060 GPU. We 

implement the proposed model using Python. 
 

Results and Discussion 
Ablation Study 
The effectiveness of transformer-based encoder in 

sign language recognition methods. We evaluate 

the efficacy of sign language recognition 

techniques using the transformer-based encoder, 

both with and without it. The approaches utilize 

multiple pretrained Convolutional Neural 

Networks (CNN), such as VGG16 (20), ResNet-50 

(21), MobileNet (22) and EfficientNet-B0 (14).  

Table 3 displays the accuracy results for both the 

ASL dataset and the ASL dataset with digits. Table 

3, shows that, when it comes to the ASL dataset, 

incorporating transformer layers significantly 

improved accuracy for various model 

architectures. Notably, VGG16 demonstrated a 

remarkable increase of 2.75% in accuracy. 

Similarly, ResNet-50 and MobileNet showed 

significant percentage improvements of 1.16% and 

1.04%, respectively. The EfficientNet-B0 model, 

known for its high performance, demonstrated a 

significant increase of 2.63% in accuracy. This 

finding confirms the effectiveness of transformer 

layers in improving the model's ability to interpret 

ASL gestures. The ASL with Digits dataset 

highlights the effectiveness of incorporating 

transformers to enhance accuracy metrics. We 

found that transformers significantly improve 

accuracy across various architectures, including 

VGG16, ResNet-50, MobileNet, and EfficientNet-

B0. In terms of accuracy, VGG16 showed a 

significant increase of 2.68%, while ResNet-50 and 

MobileNet saw improvements of 1.65% and 

1.38%, respectively. There was a noticeable 

improvement of 1.69% in accuracy, even within 

the already proficient EfficientNet-B0 framework. 

These findings highlight the importance of 

transformer architectures in effectively handling 

the challenges posed by simultaneous digit 

recognition and ASL gestures. This enables a more 

accurate understanding of combined sign language 

and numerical expressions in real-world 

situations. 

The comprehensive evaluation of our model's 

performance, as depicted in Table 4, demonstrates 

that integrating the Transformer-based decoder 

with EfficientNet-B0 leads to significant 

improvements across all performance metrics on 

both the ASL and ASL with Digits datasets. 

Specifically, the accuracy on the ASL dataset 

increased from 97.23% to 99.59% and on the ASL 

with Digits dataset from 97.21% to an impressive 

99.97%, indicating a substantial enhancement in 

the model's overall ability to correctly classify sign 

language gestures. Precision improved from 

97.84% to 99.24% on the ASL dataset and from 

97.91% to 99.36% on the ASL with Digits dataset, 

reflecting a notable reduction in false positives and 

demonstrating the model's enhanced capability to 

correctly identify relevant gestures without 

misclassification. Similarly, recall increased from 

97.31% to 99.11% and from 97.18% to 99.07% on 

the respective datasets, indicating the model's 

improved proficiency in capturing all pertinent 

instances of sign language gestures, thus reducing 

missed detections.

 

Table 3: Baseline Model with and Without Transformer-Based Decoder 

Models 
Accuracy 

ASL ASL with Digits 

VGG16 82.67 83.01 

VGG16 + Transformer 86.21 88.50 

ResNet-50 81.42 82.53 

ResNet-50 + Transformer 85.52 87.11 

MobileNet 88.69 88.21 

MobileNet + Transformer 92.68 93.54 

EfficientNet-B0 97.23 97.21 

EfficientNet-B0 + Transformer 99.59 99.97 
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Table 4: Performance Metrics on ASL and ASL with Digits Dataset 

Model ASL ASL with Digits 

Precision Recall F1-Score Precision Recall F1-Score 

EfficientNet-B0 97.84 97.31 97.57 97.91 97.18 97.54 

EfficientNet-B0 

+ Transformer 

99.24 99.11 99.17 99.36 99.07 99.21 

The F1-Score, which harmonizes precision and 

recall, rose from 97.57% to 99.17% on the ASL 

dataset and from 97.54% to 99.21% on the ASL 

with Digits dataset, underscoring a balanced and 

significant improvement in overall classification 

performance. These consistent enhancements 

across all metrics underscore the efficacy of the 

Transformer-based decoder in capturing complex 

spatial dependencies and contextual nuances 

inherent in sign language images. The self-

attention mechanism within the Transformer 

enables the model to focus on the most salient 

features, enhancing its discriminative capabilities 

and robustness against variations in signing styles 

and environmental conditions. Consequently, the 

integration of EfficientNet-B0 with the 

Transformer-based decoder not only achieves 

higher accuracy but also demonstrates enhanced 

reliability and efficiency, highlighting its potential 

for developing practical and robust sign language 

recognition systems suitable for real-world 

applications that demand high precision and recall. 

Comparison with Other State-of-Art 

Methods 
Our proposed methodology is highly accurate on 

both datasets, setting it apart from other 

approaches. Although traditional approaches like 

LBP + PNN achieve decent accuracy, utilizing deep 

learning models like CNN and ADCNN produces 

remarkable results. For instance, on the ASL 

dataset, CNN achieves an accuracy of 99.78% and 

ADCNN achieves 98.50%. Similarly, on the ASL 

with Digits dataset, CNN achieves an accuracy of 

98.65% and ADCNN achieves 98.49%. In addition, 

when transformer architectures are integrated 

into CNN models, such as in ViT with lightweight 

CNN and multi-head CNN, they are able to achieve 

impressive accuracies of 98.17% and 98.98%, 

respectively. Nevertheless, our model, which 

combines EfficientNet-B0 with Transformer, 

outperforms all of them. It achieves impressive 

accuracies of 99.59% on the ASL dataset and an 

exceptional 99.97% on the ASL with Digits dataset, 

showcasing its superiority over other methods in 

the comparison, show in Table 5.
 

Table 5: Comparison with Other State-of-Arts Method on ASL and ASL with Digit Dataset 

Models 
Accuracy (%) 

ASL ASL with Digits 

LBP + PNN (4) 93.33 - 

CNN (23) 99.78 98.65 

ADCNN (24) 98.50 98.49 

ViT + Lightweight CNN (2) 98.17  

Multi-head CNN (11) 98.98  

EfficientNet-B0 + Transformer (Ours) 99.59 99.97 

Practical Implementation Challenges 
Environmental Unpredictability: Variations in 

lighting conditions, backgrounds, and camera 

angles can affect model performance. To mitigate 

this, we employed data augmentation techniques 

during training, such as random brightness 

adjustments, rotations, and translations, to 

enhance the model's robustness. Future work 

includes exploring domain adaptation methods to 

further improve performance in diverse 

environments. 

Signer Diversity: Differences in hand shapes, sizes, 

skin tones, and individual signing styles pose 

challenges. Expanding the training dataset to 

include a diverse set of signers and utilizing 

transfer learning can help the model generalize 

better. We also suggest exploring personalized 

models or adaptive algorithms that can adjust to 

individual users over time. 



   

687 
 

Real-Time Processing: Our model is designed to be 

computationally efficient, leveraging EfficientNet-

B0 and an optimized Transformer decoder. This 

efficiency allows for real-time processing, which is 

critical for practical applications. Potential 

optimizations include model quantization and 

pruning, and the use of hardware accelerators like 

GPUs and TPUs. Future work will focus on 

deploying the model on edge devices and 

validating real-time performance. 
 

Conclusion 
This study presents a robust framework for Sign 

Language Recognition (SLR) that integrates 

EfficientNet-B0 with a Transformer-based 

decoder. The method outperforms existing 

methods on both the ASL and ASL with Digits 

datasets, thanks to deep learning advancements. 

The inclusion of transformer layers enhances 

accuracy across different model architectures, 

demonstrating the effectiveness of this approach 

in improving SLR models' interpretive capabilities. 

However, the reliance on pre-trained models may 

limit the framework's adaptability to diverse sign 

languages and gestures. Despite these limitations, 

the model achieved high accuracy rates of 99.59% 

and 99.97% on the ASL and ASL with Digits 

datasets; we acknowledge challenges in practical 

implementation, including environmental 

unpredictability, signer diversity, and real-time 

processing requirements. Addressing these 

challenges is crucial for deploying SLR systems 

effectively. Future research will focus on 

optimizing and expanding the framework, 

including developing techniques for adapting to 

new sign languages, improving efficiency for real-

time deployment on edge devices, and enhancing 

the model's robustness to environmental 

variability and signer diversity. 
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