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Abstract 
 

The Travelling Salesman Problem (TSP) is a well-known optimization that determines the shortest route that visits a 
particular set of towns and returns to the start line. As an NP-hard, its complexity will increase considerably as the 
number of cities increases. Several heuristic algorithms, such as Particle Swarm Optimization (PSO), Ant Colony 
Optimization (ACO), and Genetic Algorithm (GA), have been developed to tackle this problem efficiently. This work 
establishes an approach that employs a multi-goal optimization algorithm that optimizes for minimizing the tour 
distances and maximizing the diversity of the towns visited. This paper aims to apply an enhanced ACO with 
conventional GA and PSO algorithms separately to leverage the strengths of both algorithms. The PSO and GA paths 
enhance the pheromone in global exploration, which speeds up the pheromone initialization of ACO. Thus, optimized 
routes by ant colony get integrated with pheromone reinforcement to obtain enhanced pheromone in the hybrid of GA-
ACO and PSO-ACO. The ACO algorithm applies enhanced state transition to progress the search using the angle 
guidance function, and the best pheromone level improves convergence speed of the enhanced algorithms. This project 
has been designed as an intuitive and user-friendly interface for users to input TSP instances, select optimization 
algorithms, and visualize the solutions generated by each algorithm. Experiments are done to assess overall 
performance of ACO, GA-ACO, and PSO-ACO based on the best solution and convergence speed. Lastly, the effectiveness 
and performance of those algorithms in solving TSP across diverse scenarios and input parameters are compared.  

Keywords: Ant Colony Optimization, Multi-Objective Algorithm, Optimization Algorithm, Route Tracing, Travelling 

Salesman Problem. 
 

Introduction
The main objective of TSP is to optimize the 

distance covering the complete route travelled at 

some point in the journey. The Ant Colony System 

(ACS) has been proposed to solve the TSP (1); also, 

for the asymmetric traffic assignment problem, the 

algorithm's traffic assignments are compared to 

known solutions. ACO algorithm performed well 

due to its heuristic exploitation. Still, the 

asymmetric nature of the problem adds 

complexity, affecting efficiency and scalability (2).  

Another application of ACO is for integrated 

production and distribution scheduling, which 

aims for holistic and efficient schedules (3).  The 

PSO approach for the shortest path problem 

highlights PSO's exploration capabilities but 

lacks premature convergence issues (4). 

A logistics terminal distribution mode 

optimization using the ant colony 

algorithm produced the best simulation results, 

improving logistics efficiency but facing parameter 

tuning challenges (5). The ACO algorithm has been 

implemented for job shop scheduling with time 

windows, showing adaptability that is both 

efficient and effective (6). For finding the shortest 

path routing, the genetic algorithm has shown 

promising results but needs significant 

computational resources and careful tuning (7). 

Project scheduling and resource allocation have 

been explored with ACO, which has shown 

effectiveness in managing complex project 

scenarios (8). 

PSO approach for shortest path planning, which 

highlights its efficiency and challenges in 

sensitivity to parameters (9). Genetic algorithms 

for route finding require expertise in tuning and 

face computational costs (10). Researchers have 

applied an ant-inspired algorithm for vehicle 

routing, which has proven effective in exploring 

solution space (11). An algorithm for IT task 

scheduling, addressing practical IT sequencing 

problems with multiple objectives, has been 

proposed and shown the best results compared
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with simulated annealing, genetic algorithm, tabu 

search, and neural network algorithms (12). 

An in-depth examination of particle swarm 

optimizers has shown remarkable in the 

theoretical foundations, algorithmic aspects, 

applications, and highlighting strengths and 

limitations (13). Add ACO, a modified ACO 

algorithm for TSP, has been developed, aiming to 

enhance solution quality but facing challenges in 

complexity and parameter sensitivity (14). A 

hybrid algorithm for TSP, leveraging genetic 

algorithms and reinforcement learning, has been 

proposed, with proven potential for improving 

solutions in terms of quality but facing challenges 

in implementation and parameter tuning (15). 

Various purposes of particle swarm optimization 

methods, emphasizing simplicity and 

effectiveness, have been presented (16), 

addressing issues and challenges for future 

research perspectives (17).  

A novel hybrid approach known as the Genetic 

Simulated Annealing Ant Colony machine with 

Particle Swarm Optimization techniques (GSA-

ACO-PSO) integrates the strengths of ACO for 

preliminary solution technology, Simulated 

Annealing for enhancing those solutions, and PSO 

for sharing pheromone statistics between groups 

(18). These algorithms, such as ACO, PSO, and GA, 

have shown stable exploration and exploitation, 

adapt dynamically, and are, without difficulty, 

parallelized for big-scale issues, often taking 

advantage of hybridization for improved 

performance (19). ACO's effectiveness in solving 

real-international troubles, including journeying 

salesman trouble and car routing problems, 

underscores its broad applicability. By delving into 

modern-day challenges and outlining destiny 

research guidelines, this evaluation aims to deepen 

know-how and foster improvements in ACO, 

supplying treasured insights to researchers and 

practitioners alike (20). TSP is applicable in 

various fields like manufacturing, transportation, 

logistics, energy dispatching (21), and 

telecommunications, wherein minimizing journey 

distances or prices is essential. This survey 

explores various optimization strategies focused 

on enhancing existing approaches to further 

research. 
 

 

 

Methodology 
Motivation  
TSP is NP-hard, in which the problem's complexity 

grows exponentially because the range of cities 

increases. Given its complexity, various 

optimization strategies and algorithms are 

employed to find approximate solutions, including 

metaheuristic processes such as Particle Swarm 

Optimization (PSO), Ant Colony Optimization 

(ACO), and Genetic Algorithms (GA). These 

strategies are specifically effective in handling 

large-scale TSPs and are widely applied 

throughout various fields due to their capability to 

provide near-top-rated solutions efficiently.  

Hence, this paper aims to integrate fundamental 

PSO and GA algorithms with enhanced ACO, 

thereby enhancing GA-ACO and PSO-ACO 

leverages the strengths of both algorithms. The GA 

and PSO trails acquire higher pheromones in 

global exploration, runs the pheromone 

initialization of ACO. Thus, optimized routes by 

ants get unified with pheromone support to obtain 

enhanced pheromones in the hybrid PSO-ACO and 

GA-ACO. Here, two enhancements in the ACO 

algorithm are applied: a) Enhanced state transition 

using angle guidance function, and b) best 

pheromone level (updated rule). The performance 

of the enhanced GA-ACO and PSO-ACO algorithms 

have been compared. Experimental results 

conclude that a concise and precise route tracing 

scheme is introduced, primarily based on the 

enhanced ACO algorithm that progresses the 

search and improves the enhanced PSO-ACO 

convergence speed. 

Pseudocode  
The pseudocode of the ACO and variants of ACO i.e. 

GA-ACO and PSO-ACO are explained here under.  

Ant Colony Optimization 

Step 1: Initialize pheromone levels τij  on each 

path, heuristic function 𝜂
𝑖𝑗

 and other parameters 

such as ρ, α, β,tmax , L best, and the number of steps 

n and ants count m; 

Step 2: For each ant 𝑘 from 1 to m: Repeat until all 

cities are visited; 

Step 3: Calculate the probability of moving from 

city by Eq. [1]; 

Step 4: Use roulette wheel selection to choose the 

next city based on probabilities  𝑝𝑖𝑗
𝑘 .Move ant k to 

the selected city; 
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Step 5: Evaporate pheromone on all edges as Eq. 

[2]; 

Step 6: Update pheromone by Eq. [3] based on 

ant's tours;  

Step 7: If a shorter tour is found: Update L as best 

and record the tour; 

Step 8: Repeat steps 2-4 for tmax iterations or till a 

termination condition is obtained.

 

𝑝𝑖𝑗
𝑘 =

[𝜏𝑖𝑗]𝛼.[𝜂𝑖𝑗]𝛽

∑𝑙𝜖𝑎𝑙𝑙𝑜𝑤𝑒𝑑 [𝜏𝑖𝑗(𝑡)]𝛼.[𝜂𝑖𝑗]𝛽
                                  [1] 

 

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌). 𝜏𝑖𝑗(𝑡)                                    [2] 

𝜏𝑖𝑗(𝑡 + 1) = 𝜏𝑖𝑗 ∑  𝑚
𝑘=1 ∆𝜏𝑖𝑗

𝑘                                    [3] 

    where             ∆𝜏𝑖𝑗
𝑘 = {

𝑄

𝐿𝑘
       𝑖𝑓 𝑎𝑛𝑡 𝑘 𝑢𝑠𝑒𝑠 𝑒𝑑𝑔𝑒 𝑖 → 𝑗 𝑖𝑛 𝑖𝑡𝑠 𝑡𝑜𝑢𝑟 0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 

Enhanced ACO with Genetic Algorithm 

Step 1: Initialize the population size N, 

chromosome length, and other parameters. 

Step 2: Compute the fitness value of an individual 

in the population by Eq. [4]; 

Step 3: Each individual retains its ideal fitness 

value Gbest, and the present global ideal fitness value 

Hbest; 

Step 4: Update the position of an individual using 

Eq. [5]; 

Step 5: Repeat steps 2-4 until an exit condition is 

met; 

Step 6: Transform the peak route by GA into the 

pheromone concentration for the ACO algorithm; 

Step 7: Initialize the pheromone levels on each path 

and set other parameters for ACO; 

Step 8: Randomly distribute ants to each other city; 

Step 9: An individual ant chooses the subsequent 

location based on probability Eq. [6] for enhanced 

state transition (21); 

This enhanced state transition improves the route 

search diversity, which is obtained by integrating 

the angle guidance function [𝜇𝑖𝑗(𝑡)]𝛾  

thereby increasing the route search efficiency. 

Simultaneously, the heuristic function 𝜂′𝑖𝑗(𝑡) gets 

optimized by introducing distance from the 

succeeding likely node to the nearby node built on 

the conventional heuristic function 
1

(𝜆.𝑑𝑖𝑗+ 𝜇.𝑑𝑗𝑔)2
. 

Hence, the accuracy of the route search is 

improved. 

Step 10: Compute the distance traveled by 

individual ant and update the ideal path of this 

iteration. 

Step 11: Modify the best pheromone levels on each 

path according to Eq. [7]; 

Step 12: Check if the loop condition is met. 

Otherwise, go to step 9. If affirmative, output the 

ideal path, concluding the algorithm. 

The integration of the GA-ACO algorithm 

strengthens the pheromone accumulation of the 

ants’ colony at the initial stage. Meanwhile, the ACO 

gets improvised based on the GA route, evading the 

ACO’s blind search.  

Enhanced ACO with PSO Algorithm 

Step 1: Set the particle position, speed, and 

population size N. 

Step 2: Compute the fitness value of each particle 

as per Eq. [8]; 

Step 3: The individual particle retains its optimal 

fitness value, Abest, and the current global optimal 

fitness value, Bbest, correspondingly. The particle 

consistently adapts its status to explore alternative 

solutions through Eq.  [9]; 

Step 4: Check if the condition is met; if affirmative, 

output the ideal path achieved by the particle 

swarm else go to step 2; 

Step 5: Convert the most efficient direction found 

by the Particle Swarm Optimization into 

pheromone ranges for the Ant Colony Optimization 

algorithm, establishing the pheromone attention to 

1.3; 

Step 6: The ant colony is distributed at random to 

each city;  

Step 7: Every ant chooses the succeeding location 

depending on Eq. [10] for enhanced state transition 

(21); 

This enhanced state transition improves the route 

search diversity, which is obtained by integrating 

the angle guidance function [𝜇𝑖𝑗(𝑡)]𝛾  

thereby increasing the route search efficiency. 

Simultaneously, the heuristic function 𝜂′𝑖𝑗(𝑡) gets 

optimized by introducing distance from the 

succeeding likely node to the nearby node built on 

the conventional heuristic function 
1

(𝜆.𝑑𝑖𝑗+ 𝜇.𝑑𝑗𝑔)2
. 

Hence, the accuracy of the route search is 

improved. 

Step 8: Compute the distance traveled by every ant, 
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verify the globally optimal path of the loop, and 

change the table.   

Step 9: Adjust the best pheromone levels (21) on 

individual path according to Eq. [11];

 

                       𝑑𝑖𝑗 =  √(𝑚𝑖 −  𝑚𝑗)2 + (𝑛𝑖  −  𝑛𝑗)2                                       [4] 

 

   𝑣𝑖+1 =  𝑤𝑣𝑖 + 𝑐1𝑟1(𝐺𝑏𝑒𝑠𝑡  − 𝑚𝑖)  + 𝑐2𝑟2(𝐻𝑏𝑒𝑠𝑡 − 𝑚𝑖)                        [5] 

 

                                   𝐴𝑖𝑗
′ (𝑡)  =  [𝜏′𝑖𝑗(𝑡)]𝛼 [𝜂′𝑖𝑗(𝑡)]𝛽[𝜇𝑖𝑗(𝑡)]𝛾                        [6] 

 

                               𝜏′
𝑖𝑗(𝑡 + 𝑛)  = (1 − 𝜌′). 𝜏′

𝑖𝑗(𝑡) +  𝛥𝜏′
𝑖𝑗(𝑡)                    [7] 

                   where                  Δ𝜏′𝑖𝑗 =  ∑  𝑙
𝑘=1 𝛥𝜏𝑖𝑗(𝑡)

𝑘  

  

                                         𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  ∑  (𝑖,𝑗)⊂𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑑𝑖𝑗                                [8] 

                 where            𝑑𝑖𝑗 = √(𝑝𝑖 − 𝑝𝑗)2 + (𝑞𝑖 − 𝑞𝑗)2 

                   𝑣𝑖+1 = 𝑤𝑣𝑖 + 𝑐1𝑟1(𝐴𝑏𝑒𝑠𝑡 − 𝑝𝑖)+𝑐2𝑟2(𝐵𝑏𝑒𝑠𝑡 − 𝑝𝑖)                      [9] 

𝑝𝑖+1 = 𝑝𝑖 + 𝑣𝑖+1 
  

                  𝐴𝑖𝑗
′ (t) = {

[𝜏′𝑖𝑗(𝑡)]𝛼 [𝜂′𝑖𝑗(𝑡)]𝛽[𝜇𝑖𝑗(𝑡)]𝛾

∑𝑠⊂𝑇𝑎𝑙𝑙𝑜𝑤𝑒𝑑  ,𝑎 [𝜏′𝑖𝑗(𝑡)]𝛼 [𝜂′𝑖𝑗(𝑡)]𝛽[𝜇𝑖𝑗(𝑡)]𝛾
 0                                  [10] 

 

                                     𝜏′𝑖𝑗(𝑡 + 𝑛) = (1 − 𝜌′).𝜏′𝑖𝑗(t)+Δ𝜏′
𝑖𝑗(𝑡)                                                              [11] 

                          where      Δ𝜏′𝑖𝑗   =∑  𝑚
𝑘=1 𝛥𝜏𝑖𝑗

𝑘 (𝑡) 
 

here, 𝜌′ depends on the adjustment coefficient 

whose value is less than 1, the optimal route multi-

objective value, and the distance from the source 

region to the target region. The optimal route multi-

objective value reaches a minimal value 

comparatively than at the initial stage of the 

algorithm, which is ahead of the identified path. 

This ants’ capability maximizes the speed of the ant 

colony search, thus making immediate 

convergence. Subsequently, the resultant best 

pheromone level increases the ant colony 

concentration on the identified optimal path to 

attain global optimization, increasing convergence 

speed.  

Step 10: Check if the condition is satisfied; else, go 

to step 7. If affirmative, yield the optimal path, 

concluding the algorithm. 

The integration of the PSO-ACO algorithm 

strengthens the pheromone accumulation of the 

ants’ colony at the initial stage. Meanwhile, the ACO 

gets improvised based on the PSO route, evading 

the ACO’s blind search. This leads to improving the 

PSO-ACO algorithm search and convergence speed. 

Figure 1 gives the corresponding flowcharts of the 

enhanced GA-ACO and PSO-ACO algorithms and 

depicts their pseudocode. 

Computational Complexity 
Computational complexity is a set of measures that 

includes time and space complexity, which 

determines how many resources are utilized by the 

operations specified in the algorithms. These 

complexity measures can be approximated by big-

O notation. Table 1 describes the time complexity 

T(n) of the ACO and variants of ACO algorithms. 

Table 1 clearly demonstrates that the time 

complexity of each algorithm is based on various 

factors like the number of iterations, particles, 

ants, and cities, and mainly on the problem's 

structure and requirements. Each algorithm's 

complexity is induced by the problem's size and 

specific operations like fitness evaluation or 

pathfinding. This paper compares 

the experimental results of optimization 

algorithms evaluated based on above factors.
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Figure 1: Flowchart of enhanced (a) GA-ACO algorithm (b) PSO-ACO algorithm   
 

Table 1:  Description of Time Complexity of the ACO and Variants of the ACO Algorithm 

Name of the 

Algorithms 

Time Complexity 

T(n) 

Parameters Description 

Particle Swarm 

Optimization (PSO) 

Algorithm 

O (𝑇∗𝑁∗(𝐷+𝐶)) T: Quantity of iterations. 

N: Number of particles. 

D: Dimensionality of the problem. 

C: Complexity of the health evaluation feature. 

Ant Colony 

Optimization (ACO) 

Algorithm 

O (T∗M∗N^2) T: Range of iterations. 

M: Number of ants. 

N: Range of cities. 

Genetic Algorithm 

(GA) 

O (G∗P∗L ^2) G: A variety of generations. 

P: Population Size. 

L: Length of each chromosome or course. 

F: Fitness assessment complexity, which relies upon 

the trouble. 

Genetic Algorithm - 

Ant Colony 

Optimization  

(GA-ACO)  

Algorithm 

O (P∗D∗G∗M∗D∗I) P: Population Size. 

G: A variety of generations. 

D: Number of decision variables. 

I: Range of iterations. 

M: Number of ants. 

Particle Swarm 

Optimization - Ant 

Colony Optimization 

(PSO-ACO)  

Algorithm 

O (TPSO ∗ NPSO ∗D) + O 

(TACO ∗ MACO∗ E) 

 

 

T: Quantity of iterations. 

N: Number of particles. 

D: Dimensionality of the problem. 

M: Number of ants. 

E: Number of Edges in the Graph. 
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Results and Discussion 
The hybrid approach is written in Python script 

run on the machine set up with Intel(R) Core (TM) 

i5-10210U CPU @ 1.60GHz 2.11 GHz, Windows 11 

Pro machine, and 16 GB of RAM. This hybrid 

strategy is implemented across distinct datasets, 

specifying distinct topological systems. 

Implementing the ACO, GA-ACO, and PSO-ACO 

algorithms starts with initializing different 

parameters in the script. Table 2 shows the various 

parameters initialization for ACO and variants of 

the ACO algorithm
. 

Table 2:  List of Parameters Initialization of ACO and Variants of ACO Algorithm 

Parameter ACO GA-ACO PSO-ACO 

Population Size 50 ants 100 chromosomes 

(GA), +50 ants (ACO) 

30 particles (PSO) +   50 

ants (ACO) 

Iteration 50 200 generations (GA) 100(PSO) 

Pheromone Evaporation Rate 0.5 0.5 0.5 

Pheromone Influence(α) 1.0 1.0 1.0 

Heuristic Influence(β) 2.0 2.0 2.0 

Inertia Weight(w) NA NA 0.7 (reducing dynamically) 

Cognitive Coefficient(ct) NA NA 1.5 

Social Coefficient NA NA 1.5 

Velocity Updates (PSO) NA NA Based on inertia, cognitive 

and social components 

Crossover Rate NA 0.8(GA parameter) NA 

Mutation Rate (GA) NA 0.05(GA parameter) NA 

To visualize the overall performance of these 

algorithms, graphs have been generated, 

illustrating their convergence behavior over time. 

Figure 2 provides a clean contrast of the routes 

built via every ACO version in terms of the 

exceptional performance of the answers. 

Model Evaluation of ACO and Variants 

of ACO Algorithm 
It demonstrates how the best route has been built 

using the different variants of the Ant Colony 

Optimization algorithm. Initially, the basic model 

for a route for the variant number of connected 

cities is from different ACO datasets. The 

corresponding visualization graphs are shown in 

Figure 2. Variants of the ACO algorithm have 

been compared in this examination, with every set 

of rules being evaluated primarily based on its 

capability to become aware of shorter and extra 

green routes. 

Through iterative processes, each set of rules 

becomes adjusted to optimize its parameters, 

which include the pheromone replacement rate, 

evaporation price, and heuristic effect. On applying 

these procedures of ACO algorithms, the fitness of 

each algorithm is tuned optimally, as shown in 

Figure 3. Initially, route tracing was done locally by 

particle swarm optimization. This route is traced 

by applying the ant colony optimization, where the 

pheromone concentration is enhanced by setting 

the value as 1.3.  

This enhancement caused improvements inside 

the neighborhood routes recognized by PSO, 

remodelling them into globally optimized answers. 

As a result, the blended PSO-ACO set of rules not 

only improved the efficiency of the quest 

procedure but also ensured that the routes 

identified were globally foremost. This improves 

the local route as best globally. Compared to the 

other two algorithms, PSO with ACO shows the 

best fitness.
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Figure 2: Dataset Visualization on Connected through the Following Number of (a) 5 (b) 10 (c) 12 Cities  

 

 
(a) ACO Algorithm 
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(b) Enhanced GA - ACO Algorithm 

 
(c) Enhanced PSO - ACO Algorithm 

Figure 3: Best Fitness Obtained from ACO and Variants of ACO Algorithm 
 

Performance Comparison for the Route 

Tracing Problem 
Experiments have been conducted with dataset 4, 

which has 12 cities that produced 12 sets and 

implemented three optimization algorithms. The 

experiment settings ensure the effectiveness of the 

algorithms, and these details are accumulated in 

Table 3. Each experiment case constituted a 

different target city, which calculated the optimal 

path based on the estimated time duration. 

Table 3 demonstrates that the optimal path for the 

dataset consisting of 12 cities has been estimated. 

The route distance of the ACO algorithm ranges 

from 163 to 226 cm, and the estimated speed range 

is from 4.01s to 4.98s. The optimal path has been 

estimated to be the route distance of the enhanced 

GA-ACO algorithm, which is from 164 to 216 cm, 

and the estimated speed range is from 3.24s to 

4.07s. The optimal path has been estimated to be 

the route distance of the enhanced PSO-ACO 

algorithm, which is from 107 to 180 cm, and the 

estimated speed range is from 2.78s to 3.93s. 

These experimental results are visualized and 

compared. The graphical points for 12 cases are 

shown in Figure 4. The enhanced PSO-ACO has a 
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better optimal path and is less time-consuming 

than the other two algorithms. Also, the enhanced 

GA-ACO algorithm has better results than the 

conventional ACO algorithm. Finally, the results of 

this experiment demonstrate that the enhanced 

PSO-ACO algorithm is more effective in route 

tracing and more significant than the enhanced 

GA-ACO in TSP applications. 

The optimization algorithms perform 

computations limited by 50 iterations, and their 

best cost is calculated by fitness applied to 

different datasets having varying numbers of 

cities. These values are listed in Table 4 and 

visually represented in Figure 5. Better results are 

obtained when enhanced ACO is integrated with 

the Genetic or Particle Swarm Optimization 

algorithm than the sole Ant Colony Optimization 

algorithm.

 

Table 3:  Experimental Results of ACO and Variants of ACO Optimization Algorithms for the Dataset 4 (12 

cities)  

Ex. No. ACO GA-ACO PSO-ACO 

Route 

Distance d(cm) 

Speed 

T(s) 

Route 

Distance d(cm) 

Speed 

T(s) 

Route 

Distance d(cm) 

Speed 

T(s) 

1 193 4.68 179 3.67 112 2.79 

2 181 4.45 176 3.63 136 3.05 

3 208 4.71 204 4.36 180 3.93 

4 226 4.98 212 4.01 176 3.87 

5 225 4.97 216 4.07 127 2.92 

6 212 4.73 192 3.47 107 2.78 

7 163 4.01 164 3.24 145 3.21 

8 180 4.44 167 3.26 132 3.02 

9 171 4.19 169 3.29 124 2.89 

10 178 4.41 172 3.34 135 3.04 

11 173 4.24 171 3.32 129 2.93 

12 202 4.70 198 3.89 153 3.27 

 

 
(a) Experimental Results Based on Route Distance for Dataset of 12 Cities 
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(b) Experimental Results Based on Speed for Dataset of 12 Cities 

Figure 4: Results of Experiments Cases Run on the ACO and Variants of ACO Algorithms Trained on 

a Dataset  
  

Table 4:  Performance Indicators of ACO and Variants of ACO Optimization Algorithms  

Dataset with No. 

of Cities 

ACO  GA - ACO PSO – ACO 

Speed Fitness Speed Fitness Speed Fitness 

Data Set 1 

(5 Cities) 

2.53 37 2.23 35 1.97 34 

Data Set 2 

(8 Cities) 

3.09 204 2.98 203 2.09 199 

Data Set 3 

(10 Cities) 

3.97 224 2.99 196 2.37 159 

Data Set 4 

(12 Cities) 

4.77 216 3.43 190 2.71 103 

The fitness function evaluates the corresponding 

algorithms to find the optimal path for the given 

TSP application. Table 4 determines that the best 

fitness leading to an optimal path of the ACO 

algorithm for various datasets, namely 1 to 4, is 37, 

204, 224, and 216, respectively. The speed ranges 

from 2.53s to 4.77s. The best fitness leading to an 

optimal path of the GA-ACO algorithm for various 

datasets, namely 1 to 4, is 35, 203, 196, and 190, 

respectively. The speed ranges from 2.23s to 3.43s. 

The best fitness leading to an optimal path of the 

PSO-ACO algorithm for various datasets, namely 1 

to 4, is 34, 199, 159, and 103, respectively. The 

speed ranges from 1.97s to 2.98s.

 
  

 
Figure 5: Performance Comparison of the ACO and Variants of ACO Algorithm Trained on Datasets 
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It is concluded that leveraging the strengths of 

PSO-ACO algorithms significantly changed the 

method of locating the most appropriate routes in 

complicated city networks. The software of ACO's 

pheromone-based seeks, in aggregate with the 

exploratory capabilities of PSO, to provide a 

powerful device for addressing huge-scale 

optimization problems. This research shows that 

the PSO-ACO hybrid method offers quality fitness 

results compared to different optimization 

algorithms, making it a perfect preference for 

solving complicated direction optimization issues, 

including those found inside the Traveling 

Salesman Problem.  
 

Conclusion 
This paper investigates solving the TSP using 

variants of Ant Colony Optimization (ACO), such 

as GA-ACO and PSO-ACO, that revealed nuanced 

performance differences among the algorithms. 

PSO-ACO consistently delivered high-quality 

solutions across various TSP instances, 

showcasing scalability and robustness, especially 

for larger problem sizes. GA-ACO demonstrated 

robustness in finding near-optimal solutions but 

with higher computational costs, while PSO 

exhibited fast convergence but struggled with 

global optimization. Each algorithm presented 

trade-offs between solution quality, convergence 

speed, and scalability, with ACO emerging as a 

versatile choice for tackling complex TSP 

instances. The user-friendly web application 

provided an intuitive platform for users to 

interact with and gain insights into these 

optimization techniques, emphasizing their 

efficacy in addressing real-world combinatorial 

optimization challenges.  
 

Abbreviations 
TSP: Travelling Salesman Problem 

GA: Genetic Algorithm 

PSO: Particle Swarm Optimization 

ACO: Ant Colony Optimization 
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